Fractal Calculus: Nonhomogeneous Linear Systems

dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.authorwosid Ramazanova, Aysel/T-4255-2019
dc.authorwosid Bongiorno, Donatella/Jne-8132-2023
dc.contributor.author Khalili Golmankhaneh, Alireza
dc.contributor.author Bongiorno, Donatella
dc.contributor.author Ramazanova, Aysel T.
dc.date.accessioned 2025-11-30T19:13:54Z
dc.date.available 2025-11-30T19:13:54Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Khalili Golmankhaneh, Alireza] Islamic Azad Univ, Dept Phys, Ur C, Orumiyeh 63896, West Azerbaijan, Iran; [Khalili Golmankhaneh, Alireza] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Bongiorno, Donatella] Univ Palermo, Dept Engn, I-90128 Palermo, Italy; [Ramazanova, Aysel T.] Fak Math, Nichtlineare Optimierung, Thea Leymann Str 9D, D-45127 Essen, Germany en_US
dc.description.abstract In this paper, we present a concise overview of fractal calculus and explore the solution of non-homogeneous fractal differential equations. We analyze fractal homogeneous linear systems with initial conditions, introducing the fundamental matrix and special fundamental matrix, and demonstrate their applications in solving systems and analyzing the Jordan form of matrices. We propose the method of undetermined coefficients for solving non-homogeneous fractal linear differential equations and introduce the method of variation of parameters as a supplementary technique. To illustrate these methods, we apply them to the differential equations of resistor-inductor-capacitor (RLC) circuits, successfully solving the corresponding fractal differential equations. Additionally, we provide examples, solve systems with initial conditions, and present the results through plotted graphs. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1515/jncds-2024-0119
dc.identifier.endpage 175 en_US
dc.identifier.issn 2752-2334
dc.identifier.issue 3-4 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 155 en_US
dc.identifier.uri https://doi.org/10.1515/jncds-2024-0119
dc.identifier.uri https://hdl.handle.net/20.500.14720/28984
dc.identifier.volume 26 en_US
dc.identifier.wos WOS:001561045900001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Walter de Gruyter GmbH en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractal Sets en_US
dc.subject Fractal Differential Equations en_US
dc.subject Fractal Non-Homogeneous Differential Equations Systems en_US
dc.title Fractal Calculus: Nonhomogeneous Linear Systems en_US
dc.type Article en_US
dspace.entity.type Publication

Files