Fractal Calculus: Nonhomogeneous Linear Systems
| dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
| dc.authorwosid | Ramazanova, Aysel/T-4255-2019 | |
| dc.authorwosid | Bongiorno, Donatella/Jne-8132-2023 | |
| dc.contributor.author | Khalili Golmankhaneh, Alireza | |
| dc.contributor.author | Bongiorno, Donatella | |
| dc.contributor.author | Ramazanova, Aysel T. | |
| dc.date.accessioned | 2025-11-30T19:13:54Z | |
| dc.date.available | 2025-11-30T19:13:54Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Khalili Golmankhaneh, Alireza] Islamic Azad Univ, Dept Phys, Ur C, Orumiyeh 63896, West Azerbaijan, Iran; [Khalili Golmankhaneh, Alireza] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Bongiorno, Donatella] Univ Palermo, Dept Engn, I-90128 Palermo, Italy; [Ramazanova, Aysel T.] Fak Math, Nichtlineare Optimierung, Thea Leymann Str 9D, D-45127 Essen, Germany | en_US |
| dc.description.abstract | In this paper, we present a concise overview of fractal calculus and explore the solution of non-homogeneous fractal differential equations. We analyze fractal homogeneous linear systems with initial conditions, introducing the fundamental matrix and special fundamental matrix, and demonstrate their applications in solving systems and analyzing the Jordan form of matrices. We propose the method of undetermined coefficients for solving non-homogeneous fractal linear differential equations and introduce the method of variation of parameters as a supplementary technique. To illustrate these methods, we apply them to the differential equations of resistor-inductor-capacitor (RLC) circuits, successfully solving the corresponding fractal differential equations. Additionally, we provide examples, solve systems with initial conditions, and present the results through plotted graphs. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1515/jncds-2024-0119 | |
| dc.identifier.endpage | 175 | en_US |
| dc.identifier.issn | 2752-2334 | |
| dc.identifier.issue | 3-4 | en_US |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.startpage | 155 | en_US |
| dc.identifier.uri | https://doi.org/10.1515/jncds-2024-0119 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/28984 | |
| dc.identifier.volume | 26 | en_US |
| dc.identifier.wos | WOS:001561045900001 | |
| dc.identifier.wosquality | N/A | |
| dc.language.iso | en | en_US |
| dc.publisher | Walter de Gruyter GmbH | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractal Sets | en_US |
| dc.subject | Fractal Differential Equations | en_US |
| dc.subject | Fractal Non-Homogeneous Differential Equations Systems | en_US |
| dc.title | Fractal Calculus: Nonhomogeneous Linear Systems | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |