On Torsion Units in Integral Group Ring of a Type of Cyclic-By Groups
dc.contributor.author | Kusmus, Omer | |
dc.date.accessioned | 2025-09-03T16:38:41Z | |
dc.date.available | 2025-09-03T16:38:41Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Kusmus, Omer] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, Van, Turkiye | en_US |
dc.description.abstract | In this paper, using a complex representation of degree 2 of the group U12 which is given in [5] and belongs to the class of cyclic-byabelian groups [4], we investigate some parametric characteristics of normalized torsion units in integral group ring of U12 relying on the fact that all cyclic-by-abelian groups satisfy the first of Zassenhaus conjectures [4]. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.69793/ijmcs/03.2025/omer | |
dc.identifier.endpage | 935 | en_US |
dc.identifier.issn | 1814-0424 | |
dc.identifier.issn | 1814-0432 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-105013235065 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 923 | en_US |
dc.identifier.uri | https://doi.org/10.69793/ijmcs/03.2025/omer | |
dc.identifier.volume | 20 | en_US |
dc.identifier.wos | WOS:001561735100033 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Kusmus, Omer | |
dc.language.iso | en | en_US |
dc.publisher | Badih Ghusayni | en_US |
dc.relation.ispartof | International Journal of Mathematics and Computer Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Group Ring | en_US |
dc.subject | Integral Group Ring | en_US |
dc.subject | Representation | en_US |
dc.subject | Torsion Unit | en_US |
dc.subject | Zassenhaus Conjecture | en_US |
dc.title | On Torsion Units in Integral Group Ring of a Type of Cyclic-By Groups | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |