Fractal Complex Analysis
| dc.authorscopusid | 25122552100 | |
| dc.authorscopusid | 57211987210 | |
| dc.authorscopusid | 6602933984 | |
| dc.authorscopusid | 56220030700 | |
| dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
| dc.authorwosid | Rodriguez-Lopez, Rosana/A-5288-2013 | |
| dc.authorwosid | Stamova, Ivanka/Aaq-1586-2020 | |
| dc.contributor.author | Golmankhaneh, Alireza Khalili | |
| dc.contributor.author | Rodriguez-Lopez, Rosana | |
| dc.contributor.author | Stamova, Ivanka M. | |
| dc.contributor.author | Celik, Ercan | |
| dc.date.accessioned | 2025-07-30T16:33:30Z | |
| dc.date.available | 2025-07-30T16:33:30Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Ur C, Orumiyeh 63896, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Rodriguez-Lopez, Rosana] Univ Santiago de Compostela, Fac Matemat, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 10587, Spain; [Stamova, Ivanka M.] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA; [Celik, Ercan] Kyrgyz Turkish Manas Univ, Dept Appl Math & Informat, Bishkek, Kyrgyzstan | en_US |
| dc.description.abstract | In this paper, we begin by providing a concise overview of fractal calculus. We then explore the concepts of fractal complex numbers and functions, define the fractal complex derivative, and derive the fractal Cauchy-Riemann equations. Additionally, we introduce fractal contour integrals, offer illustrative examples, and present their visualizations. Finally, we examine and visualize the transformations of circles under fractal complex functions. | en_US |
| dc.description.woscitationindex | Emerging Sources Citation Index | |
| dc.identifier.doi | 10.22124/jmm.2025.29566.2629 | |
| dc.identifier.endpage | 684 | en_US |
| dc.identifier.issn | 2345-394X | |
| dc.identifier.issn | 2382-9869 | |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.scopus | 2-s2.0-105010723585 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 675 | en_US |
| dc.identifier.uri | https://doi.org/10.22124/jmm.2025.29566.2629 | |
| dc.identifier.volume | 13 | en_US |
| dc.identifier.wos | WOS:001546030000012 | |
| dc.identifier.wosquality | N/A | |
| dc.language.iso | en | en_US |
| dc.publisher | Univ Guilan | en_US |
| dc.relation.ispartof | Journal of Mathematical Modeling | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fractal Calculus | en_US |
| dc.subject | Fractal Complex Number | en_US |
| dc.subject | Fractal Complex Function | en_US |
| dc.subject | Fractal Complex Derivative | en_US |
| dc.subject | Fractal Contour Integrals | en_US |
| dc.title | Fractal Complex Analysis | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |