A Comparative Analysis of Land Use Classification Methods Using Landsat and Ancillary Data in Urban Mapping

dc.authorwosid Satir, Onur/Q-7885-2018
dc.contributor.author Ozvan, Hande
dc.contributor.author Satir, Onur
dc.date.accessioned 2025-09-03T16:40:08Z
dc.date.available 2025-09-03T16:40:08Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Ozvan, Hande; Satir, Onur] Van Yuzuncu Yil Univ, Van, Turkiye en_US
dc.description.abstract This study compares the performance of parametric (LDA) and non-parametric (CTA, RF, SVM) classification algorithms in mapping urban and surrounding land cover types in Balikesir, T & uuml;rkiye, using Landsat 8 OLI/TIRS imagery and ancillary data. Seven land cover classes-built-up areas, roads, water bodies, forests, meadows, agriculture, and barren land-were classified based on 2,480 ground truth points. The Random Forest (RF) classifier achieved the highest overall classification accuracy (Kappa = 0.90) and an F1-score of 0.99 for the built-up class, outperforming LDA (Kappa = 0.86), SVM (0.83), and CTA (0.78). The integration of the Digital Elevation Model (DEM) with spectral wavebands improved classification performance, particularly in distinguishing urban areas from spectrally similar classes such as barren land and roads. In contrast, additional indices like NDBI and SAVI provided only marginal improvements. Results suggest that incorporating DEM enhances model robustness and spatial accuracy, while the sole use of ancillary indices may introduce redundancy. The study underscores the importance of selecting appropriate classifier-data combinations and highlights the utility of the F1-score, alongside Kappa, for evaluating class-specific accuracy. This research contributes to urban land cover mapping by offering a comparative framework that integrates ancillary variables, helping to refine classification strategies in heterogeneous landscapes. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1007/s40808-025-02573-y
dc.identifier.issn 2363-6203
dc.identifier.issn 2363-6211
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-105013552254
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s40808-025-02573-y
dc.identifier.volume 11 en_US
dc.identifier.wos WOS:001554394100002
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.ispartof Modeling Earth Systems and Environment en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Urban Detection en_US
dc.subject Land Use Classification Techniques en_US
dc.subject Satellite Indices en_US
dc.subject Remote Sensing en_US
dc.title A Comparative Analysis of Land Use Classification Methods Using Landsat and Ancillary Data in Urban Mapping en_US
dc.type Article en_US
dspace.entity.type Publication

Files