MOF-5 Destekli Pd (0) Nanokümelerin Tepkime İçi Hazırlanması ve Nitroanilin Türevlerinin Aminoanilinlere İndirgenme Tepkimesinde Katalitik Etkinliğinin İncelenmesi
Abstract
Bu tez çalışmasında, çevre ve insan sağlığı açısından ciddi tehlikeler oluşturan nitroanilin türevlerinin, MOF-5 destekli paladyum (Pd(0)) nanokümeleri kullanılarak aminoanilinlere indirgenmesi hedeflenmiştir. Nitroanilinler; boya, ilaç, plastik ve tarım kimyasalları gibi çeşitli endüstrilerde yaygın olarak kullanılan, yüksek çözünürlüğe sahip, doğada zor bozunan, mutajenik ve karsinojenik özellikler taşıyan bileşiklerdir. Bu özellikleri nedeniyle özellikle su kaynaklarına karıştıklarında ekosistemde kalıcı ve birikimli zararlara yol açmaktadır. Çalışma kapsamında Zn₄O(BDC)₃ yapısındaki MOF-5 sentezlenmiş, tepkime-içi indirgenme reaksiyonu neticesinde bu yapı üzerinde Pd(0) nanokümeleri oluşturularak çevreci bir katalizör elde edilmiştir. Bu katalizör; 2-nitroanilin ve 4-nitroanilin gibi model bileşiklerin sulu ortamda indirgenme reaksiyonlarında kullanılmış ve etkinliği incelenmiştir. Katalizör, XRD, FT-IR, UV-Vis, ICP-OES, SEM, TEM ve XPS gibi ileri tekniklerle karakterize edilmiştir. Sonuçlar, MOF-5 destekli Pd(0) nanokümelerinin yüksek katalitik aktivite, seçicilik ve tekrar kullanılabilirlik sunduğunu ortaya koymuştur. Bu çalışma, toksik aromatik bileşiklerin çevre dostu yollarla zararsız türevlere dönüştürülmesine olanak sağlaması bakımından sürdürülebilir kimya uygulamalarına katkı sunmaktadır.
In this thesis, the reduction of nitroaniline derivatives—compounds posing serious threats to both environmental and human health—into aminoanilines was investigated using palladium (Pd(0)) nanoclusters supported on MOF-5. Nitroanilines are widely used in industries such as dyes, pharmaceuticals, plastics, and agrochemicals. Due to their high solubility, mutagenic and carcinogenic properties, and resistance to natural degradation, these compounds accumulate in aquatic environments, causing persistent and cumulative ecological damage. In this study, MOF-5 with the structure Zn₄O(BDC)₃ was synthesized, and Pd (0) nanoclusters were formed in situ on its surface through a reaction-phase reduction process to obtain an environmentally friendly catalyst. This catalyst was employed in the aqueous-phase reduction of model compounds, including 2-nitroaniline and 4-nitroaniline, and its catalytic performance was systematically evaluated. The nanocatalyst was characterized using advanced techniques such as XRD, FT-IR, UV-Vis, ICP-OES, SEM, TEM, and XPS. The results revealed that Pd(0) nanoclusters supported on MOF-5 exhibit high catalytic activity, selectivity, and reusability. This study offers a valuable contribution to the field of sustainable chemistry by demonstrating an effective and green method for the detoxification of hazardous aromatic compounds.
In this thesis, the reduction of nitroaniline derivatives—compounds posing serious threats to both environmental and human health—into aminoanilines was investigated using palladium (Pd(0)) nanoclusters supported on MOF-5. Nitroanilines are widely used in industries such as dyes, pharmaceuticals, plastics, and agrochemicals. Due to their high solubility, mutagenic and carcinogenic properties, and resistance to natural degradation, these compounds accumulate in aquatic environments, causing persistent and cumulative ecological damage. In this study, MOF-5 with the structure Zn₄O(BDC)₃ was synthesized, and Pd (0) nanoclusters were formed in situ on its surface through a reaction-phase reduction process to obtain an environmentally friendly catalyst. This catalyst was employed in the aqueous-phase reduction of model compounds, including 2-nitroaniline and 4-nitroaniline, and its catalytic performance was systematically evaluated. The nanocatalyst was characterized using advanced techniques such as XRD, FT-IR, UV-Vis, ICP-OES, SEM, TEM, and XPS. The results revealed that Pd(0) nanoclusters supported on MOF-5 exhibit high catalytic activity, selectivity, and reusability. This study offers a valuable contribution to the field of sustainable chemistry by demonstrating an effective and green method for the detoxification of hazardous aromatic compounds.
Description
Keywords
Kimya, Chemistry
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
87