Covıd-19 Özelinde Bulaşıcı Hastalıkların Matematiksel Modelleri Ve Bu Modellerin Niteliksel Analizi
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bu tezde, orijinal ve mutant virüslerle COVID-19 enfeksiyonu üzerine kısmen koruyucu bir aşının etkisi bölmeli deterministik bir matematiksel model kullanılarak araştırıldı. Geliştirilen model S (duyarlı), V (aşılanmış), I_1 (orijinal virüsle enfekte), I_2 (mutant virüsle enfekte) ve R (iyileşmiş) alt bölmelerinden oluşmaktadır. Modelde hem yapay aktif bağışıklığın (aşılanmış) hem de doğal aktif bağışıklığın (enfekte) etkisi dikkate alındı. Çalışmada, COVID-19'da orijinal virüsün ve mutant virüsün bulaşıcılık, iyileşme ve ölüm oranlarının farklılığı göz önüne alınmaktadır. Öncelikle yeni nesil matris yöntemi kullanılarak temel çoğalma sayısı elde edildi. Modelin hastalıksız denge noktasının ve endemik denge noktasının lokal kararlılığı Routh-Hurwitz kriteri ile ve global kararlılığı ise Lyapunov fonksiyonları yardımıyla analiz edildi. Castillo-Chavez ve Song Çatallanma Teoremi kullanılarak, aşının yeterince etkili olmadığı durumlarda ortaya çıkan ve temel çoğalma sayısı 1'in altında olsa bile hem hastalıksız hem de endemik denge noktalarının aynı anda var olmasına yol açan geriye doğru bir çatallanmanın varlığı gösterildi. Üç model parametresi parametre tahminiyle tahmin edildi ve modele duyarlı parametreler yerel duyarlılık analizi kullanılarak belirlendi. Aşı etkinliğini temsil eden parametrenin temel çoğalma sayısına en duyarlı parametre olduğu ve aşı etkinliğinin artırılmasının ikincil vakaların ortalama sayısını azaltacağı görüldü. Modelin dinamiklerinin altında yatan temel mekanizmaları göstermek ve analitik bulguları desteklemek için sunulan üç farklı simülasyon, aşı etkinliği ile salgının seyri arasında güçlü bir ilişki olduğunu, ikincil vakaların ortalama sayısını ve enfekte bireylerin salgının etkisi altında uzun süre kalma olasılığını azaltmak için daha yüksek etkili aşılar üretmenin ve aşılama oranını artırmanın gerekli olduğunu göstermektedir. Son olarak, salgının hangi koşullar altında kontrol edilebileceğini veya azaltılabileceğini anlamak için bir optimal kontrol problemi oluşturuldu. Enfekte bireylerin sayısını azaltmak ve kontrollerin maliyetini en aza indirmek için, Pontryagin'in maksimum prensibi yardımıyla halk sağlığı eğitimi, aşılama, tedavi ve izolasyon kontrol stratejilerini içeren bir amaç fonksiyonu oluşturulmuş ve çözülmüştür. Sayısal simülasyonlar, kontrol stratejilerinin uygulanmasının COVID-19 salgınının bulaşma dinamiklerini kontrol etmede etkili olduğunu göstermekte ve dört kontrolün aynı anda uygulanmasının üç, iki ve tek kontrolün uygulanması ile karşılaştırıldığında daha etkili olduğunu göstermektedir.
This thesis investigates the effect of a partially protective vaccine on COVID-19 infection with original and mutant viruses using a compartmental deterministic mathematical model. The developed model consists of subcompartments S (susceptible), V (vaccinated), I_1 (infected with the original virus), I_2 (infected with the mutant virus), and R (recovered). The model considers the effects of both artificial active immunity (vaccinated) and natural active immunity (infected). The study considers the differences in the infectiousness, recovery, and mortality rates of the original and mutant viruses in COVID-19. First, the basic reproduction number was obtained using the next-generation matrix method. The local stability of the disease-free equilibrium point and the endemic equilibrium point of the model was analyzed using the Routh-Hurwitz criterion, and the global stability was analyzed using Lyapunov functions. Using the Castillo-Chavez and Song Bifurcation Theorem, a backward bifurcation was demonstrated, which occurs when the vaccine is insufficiently effective, leading to the simultaneous existence of both disease-free and endemic equilibrium points, even when the basic reproduction number is below 1. Three model parameters were estimated using parameter estimation, and model-sensitive parameters were determined using local sensitivity analysis. It was found that the parameter representing vaccine efficacy was the most sensitive to the basic reproduction number, and that increasing vaccine efficacy would reduce the average number of secondary cases. Three different simulations are presented to illustrate the fundamental mechanisms underlying the model's dynamics and to support the analytical findings, demonstrating a strong relationship between vaccine efficacy and the course of the epidemic. To reduce the average number of secondary cases and the likelihood of infected individuals remaining under the influence of the epidemic for extended periods, producing more effective vaccines and increasing the vaccination rate are necessary. Finally, an optimal control problem was posed to understand the conditions under which the epidemic could be controlled or mitigated. To reduce the number of infected individuals and minimize the cost of control measures, an objective function incorporating public health education, vaccination, treatment, and isolation control strategies was constructed and solved using Pontryagin's maximum principle. Numerical simulations demonstrate that the implementation of control strategies is effective in controlling the transmission dynamics of the COVID-19 pandemic, and that simultaneous implementation of four controls is more effective compared to the implementation of three, two, or a single control.
This thesis investigates the effect of a partially protective vaccine on COVID-19 infection with original and mutant viruses using a compartmental deterministic mathematical model. The developed model consists of subcompartments S (susceptible), V (vaccinated), I_1 (infected with the original virus), I_2 (infected with the mutant virus), and R (recovered). The model considers the effects of both artificial active immunity (vaccinated) and natural active immunity (infected). The study considers the differences in the infectiousness, recovery, and mortality rates of the original and mutant viruses in COVID-19. First, the basic reproduction number was obtained using the next-generation matrix method. The local stability of the disease-free equilibrium point and the endemic equilibrium point of the model was analyzed using the Routh-Hurwitz criterion, and the global stability was analyzed using Lyapunov functions. Using the Castillo-Chavez and Song Bifurcation Theorem, a backward bifurcation was demonstrated, which occurs when the vaccine is insufficiently effective, leading to the simultaneous existence of both disease-free and endemic equilibrium points, even when the basic reproduction number is below 1. Three model parameters were estimated using parameter estimation, and model-sensitive parameters were determined using local sensitivity analysis. It was found that the parameter representing vaccine efficacy was the most sensitive to the basic reproduction number, and that increasing vaccine efficacy would reduce the average number of secondary cases. Three different simulations are presented to illustrate the fundamental mechanisms underlying the model's dynamics and to support the analytical findings, demonstrating a strong relationship between vaccine efficacy and the course of the epidemic. To reduce the average number of secondary cases and the likelihood of infected individuals remaining under the influence of the epidemic for extended periods, producing more effective vaccines and increasing the vaccination rate are necessary. Finally, an optimal control problem was posed to understand the conditions under which the epidemic could be controlled or mitigated. To reduce the number of infected individuals and minimize the cost of control measures, an objective function incorporating public health education, vaccination, treatment, and isolation control strategies was constructed and solved using Pontryagin's maximum principle. Numerical simulations demonstrate that the implementation of control strategies is effective in controlling the transmission dynamics of the COVID-19 pandemic, and that simultaneous implementation of four controls is more effective compared to the implementation of three, two, or a single control.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
149