Deep Learning and Adaptive Boosting for Hydroelectric Power Prediction Using Hydro-Meteorological Data: Insights and Feature Importance Analysis

dc.authorid Karakoyun, Yakup/0000-0003-1868-452X
dc.authorscopusid 56800992900
dc.authorscopusid 57203751801
dc.authorscopusid 7101805487
dc.authorwosid Karakoyun, Yakup/Abe-7401-2020
dc.authorwosid Doğan, Ahmet/Afi-2589-2022
dc.authorwosid Katipoğlu, Okan/Aaq-2658-2020
dc.contributor.author Karakoyun, Yakup
dc.contributor.author Katipoglu, Okan Mert
dc.contributor.author Dogan, Ahmet
dc.date.accessioned 2025-06-30T15:25:51Z
dc.date.available 2025-06-30T15:25:51Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Karakoyun, Yakup] Van Yuzuncu Yil Univ, Engn Fac, Dept Mech Engn, Van, Turkiye; [Katipoglu, Okan Mert] Erzincan Binali Yildirim Univ, Dept Civil Engn, Erzincan, Turkiye; [Dogan, Ahmet] Erzincan Binali Yildirim Univ, Dept Mech Engn, Erzincan, Turkiye en_US
dc.description Karakoyun, Yakup/0000-0003-1868-452X; en_US
dc.description.abstract This study explores the use of modern artificial intelligence (AI) models such as Adaptive Boosting (AdaBoost), Autoencoder Based Regression Model (Autoencoder), Deep Neural Network (DNN), Echo State Network (ESN), Light Gradient Boosting Machine (LGBM) Residual Neural Network (ResNet) and feature importance techniques to predict energy production. Daily rainfall, streamflow, temperature and energy production data between 2016 and 2019 were used in the study. According to the feature importance analysis performed using the LGBM model, streamflow, temperature, and precipitation were identified as the most critical parameters influencing energy production. This structured AI-driven approach provided robust model evaluation and reliable performance measurements. As revealed by the analysis, the LGBM model showed the most accurate result with the values of root mean square error (RMSE: 98.27), mean absolute error (MAE: 73.93), Akaike information criterion (AIC: 17,100), Nash-Sutcliffe efficiency coefficient (NSE: 0.69), Kling-Gupta efficiency (KGE: 0.77), coefficient of determination (R2: 0.69), mean bias error (MBE: -5.23), bias factor (BF: 1.02), and percent bias (PBIAS: 1.51), while the DNN model came in with the second-best results. These findings emphasize both the effectiveness of deep learning and ensemble AI models and their practical application in improving hydroelectric power generation forecasting. Furthermore, the study underscores the importance of accurately monitoring and managing streamflow for the optimization of hydroelectric systems. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.engappai.2025.111434
dc.identifier.issn 0952-1976
dc.identifier.issn 1873-6769
dc.identifier.scopus 2-s2.0-105007725781
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.engappai.2025.111434
dc.identifier.volume 158 en_US
dc.identifier.wos WOS:001512879900002
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Deep Learning Models en_US
dc.subject Hydroelectric Energy Forecasting en_US
dc.subject Hydrometeorological Data en_US
dc.subject Feature Importance en_US
dc.subject Adaptive Boosting en_US
dc.subject Residual Neural Networks en_US
dc.title Deep Learning and Adaptive Boosting for Hydroelectric Power Prediction Using Hydro-Meteorological Data: Insights and Feature Importance Analysis en_US
dc.type Article en_US
dspace.entity.type Publication

Files