Existence Results for Krasnosel'skii Type Set Valued Operators
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bu çalışma on bölümden oluşmaktadır. İlk bölümde tezin konusu olan küme değerli dönüşüm teorisi hakkında bazı bilgiler verildi. İkinci bölümde tezin konusu ile ilgili literatürde bulunan bazı çalışmalar özet olarak sunuldu. Üçüncü bölümde tezde kullanılan materyal ve yöntemler belirtildi. Dördüncü bölümde tezde kullanılan temel tanımlar, teoremler ve lemmalar verildi. Beşinci bölümde Banach uzayında zayıf topoloji özellikleri altında Krasnosel'skii tipi teoremlerin küme değerli yeni versiyonları verildi. Altıncı bölümde Banach cebirinde zayıf topoloji özellikleri altında küme değerli operatör denklemler için bazı yeni varlık teoremleri elde edildi ve ispatları için yaklaşım metodu kullanıldı. Yedinci bölümde WC-Banach cebirinde küme değerli operatör denklemler için bazı yeni varlık teoremleri elde edildi ve ispatları için zayıf kompakt olmama ölçüsü tekniği kullanıldı. Sekizinci bölümde genelleştirilmiş daralma koşulları altında iki küme değerli operatörün toplamı için varlık sonuçları elde edildi. Dokuzuncu bölümde küme değerli taşıma denklemleri tanıtıldı ve bu denklemler için Hausdorff kompakt olmama ölçüsü yardımıyla çözümün varlığı incelendi. Son olarak onuncu bölümde bu tezde elde edilen sonuçlara ilişkin tartışma ve sonuç kısmı verildi.
This study consists of ten chapters. In the first chapter, some information was given about the set-valued transformation theory, which is the subject of the thesis. In the second chapter, some studies in the literature related to the subject of the thesis were presented briefly. In the third chapter, the materials and methods used in the thesis were stated. In the fourth chapter, the basic definitions, theorems and lemmas used in the thesis are given. In the fifth chapter, new set-valued versions of Krasnosel'skii type theorems are given under weak topology properties in Banach space. In the sixth chapter, some new existence theorems for set-valued operator equations under weak topology properties in Banach algebra were obtained and the approximation method was used for their proof. In the seventh chapter, some new existence theorems for set-valued operator equations in WC-Banach algebra were obtained and the technique of measure of weak noncompactness was used for their proofs. In the eighth chapter, existence results were obtained for the sum of two set-valued operators under generalized contraction conditions. In the ninth chapter, set-valued transport equations are introduced and existence of the solution for these equations is examined by the Hausdorff measure of non-compactness. Finally, in the tenth chapter, discussion and conclusion regarding the results obtained in this thesis are given.
This study consists of ten chapters. In the first chapter, some information was given about the set-valued transformation theory, which is the subject of the thesis. In the second chapter, some studies in the literature related to the subject of the thesis were presented briefly. In the third chapter, the materials and methods used in the thesis were stated. In the fourth chapter, the basic definitions, theorems and lemmas used in the thesis are given. In the fifth chapter, new set-valued versions of Krasnosel'skii type theorems are given under weak topology properties in Banach space. In the sixth chapter, some new existence theorems for set-valued operator equations under weak topology properties in Banach algebra were obtained and the approximation method was used for their proof. In the seventh chapter, some new existence theorems for set-valued operator equations in WC-Banach algebra were obtained and the technique of measure of weak noncompactness was used for their proofs. In the eighth chapter, existence results were obtained for the sum of two set-valued operators under generalized contraction conditions. In the ninth chapter, set-valued transport equations are introduced and existence of the solution for these equations is examined by the Hausdorff measure of non-compactness. Finally, in the tenth chapter, discussion and conclusion regarding the results obtained in this thesis are given.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
104