Data Augmentation Techniques in Deep Image Processing

dc.authorscopusid 60055509000
dc.contributor.author Ataman, Fikriye
dc.date.accessioned 2025-09-30T16:35:30Z
dc.date.available 2025-09-30T16:35:30Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Ataman] Fikriye, Van Yüzüncü Yıl Üniversitesi, Van, Turkey en_US
dc.description.abstract Image data augmentation is a technique for artificially expanding and diversifying existing image datasets. This method is beneficial when training data is insufficient for machine learning and deep learning models. It allows models to generalize better during training and reduces overfitting. The main techniques include geometric transformations, color and light changes, noise addition, optical distortions, and modern blending methods. These methods expose the model to more diversity by simulating real-world variations. Thus, data collection and labeling costs are reduced while the model's performance and generalization capacity increase. Data augmentation plays a role in the basis of success, especially in studies where medical images are processed. This study explains the techniques used for image augmentation in detail. It also reveals the performance results of the methods used on data sets and their effects on deep models. The study includes the most frequently used methods and provides a detailed literature review. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.4018/979-8-3693-9816-6.ch010
dc.identifier.endpage 262 en_US
dc.identifier.isbn 9798369398180
dc.identifier.isbn 9798369398166
dc.identifier.scopus 2-s2.0-105013699107
dc.identifier.scopusquality N/A
dc.identifier.startpage 231 en_US
dc.identifier.uri https://doi.org/10.4018/979-8-3693-9816-6.ch010
dc.identifier.uri https://hdl.handle.net/20.500.14720/28575
dc.identifier.wosquality N/A
dc.institutionauthor Ataman, Fikriye
dc.language.iso en en_US
dc.publisher IGI Global en_US
dc.relation.publicationcategory Kitap Bölümü - Uluslararası en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Deep Learning en_US
dc.subject Learning Systems en_US
dc.subject Mathematical Transformations en_US
dc.subject Medical Image Processing en_US
dc.subject Personnel Training en_US
dc.subject Augmentation Techniques en_US
dc.subject Data Augmentation en_US
dc.subject Geometric Transformations en_US
dc.subject Image Data en_US
dc.subject Image Datasets en_US
dc.subject Image Processing en_US
dc.subject Learning Models en_US
dc.subject Machine Learning en_US
dc.subject Overfitting en_US
dc.subject Training Data en_US
dc.subject Blending en_US
dc.title Data Augmentation Techniques in Deep Image Processing en_US
dc.type Book Part en_US
dspace.entity.type Publication

Files