Mean Ergodic Theorems for Power Bounded Measures

dc.authorid Sevli, Hamdullah/0009-0003-0258-031X
dc.authorscopusid 25123084500
dc.authorscopusid 15133029700
dc.contributor.author Mustafayev, Heybetkulu
dc.contributor.author Sevli, Hamdullah
dc.date.accessioned 2025-05-10T17:09:52Z
dc.date.available 2025-05-10T17:09:52Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Mustafayev, Heybetkulu; Sevli, Hamdullah] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey en_US
dc.description Sevli, Hamdullah/0009-0003-0258-031X en_US
dc.description.abstract Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0) parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n ->infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved. en_US
dc.description.sponsorship TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 Project MFAG [118F410] en_US
dc.description.sponsorship The first author was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 Project MFAG No. 118F410. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.jmaa.2021.125090
dc.identifier.issn 0022-247X
dc.identifier.issn 1096-0813
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85101545075
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1016/j.jmaa.2021.125090
dc.identifier.uri https://hdl.handle.net/20.500.14720/7266
dc.identifier.volume 500 en_US
dc.identifier.wos WOS:000634827700010
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Locally Compact (Abelian) Group en_US
dc.subject Group Algebra en_US
dc.subject Measure Algebra en_US
dc.subject Convolution Operator en_US
dc.subject Regular Matrix en_US
dc.subject Mean Ergodic Theorem en_US
dc.title Mean Ergodic Theorems for Power Bounded Measures en_US
dc.type Article en_US
dspace.entity.type Publication

Files