Mean Ergodic Theorems for Power Bounded Measures
dc.authorid | Sevli, Hamdullah/0009-0003-0258-031X | |
dc.authorscopusid | 25123084500 | |
dc.authorscopusid | 15133029700 | |
dc.contributor.author | Mustafayev, Heybetkulu | |
dc.contributor.author | Sevli, Hamdullah | |
dc.date.accessioned | 2025-05-10T17:09:52Z | |
dc.date.available | 2025-05-10T17:09:52Z | |
dc.date.issued | 2021 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Mustafayev, Heybetkulu; Sevli, Hamdullah] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkey | en_US |
dc.description | Sevli, Hamdullah/0009-0003-0258-031X | en_US |
dc.description.abstract | Let G be a locally compact abelian group and let M(G) be the convolution measure algebra of G. A measure mu is an element of M(G) is said to be power bounded if sup(n >= 0) parallel to mu(n)parallel to(1) < infinity, where mu(n) denotes nth convolution power of mu. We show that if mu is an element of M(G) is power bounded and A = [a(n,k)](n,k=0)(infinity) is a strongly regular matrix, then the limit lim(n ->infinity) Sigma(infinity)(k=0) a(n,k) mu(k) exists in the weak* topology of M(G) and is equal to the idempotent measure theta, where (theta) over cap = 1(int)F(mu). Here, (theta) over cap is the Fourier-Stieltjes transform of theta, F-mu :={gamma is an element of Gamma : (mu) over cap(gamma) = 1}, and 1(int) F-mu is the characteristic function of int F-mu. Some applications are also given. (C) 2021 Elsevier Inc. All rights reserved. | en_US |
dc.description.sponsorship | TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 Project MFAG [118F410] | en_US |
dc.description.sponsorship | The first author was supported by TUBITAK (The Scientific and Technological Research Council of Turkey) 1001 Project MFAG No. 118F410. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1016/j.jmaa.2021.125090 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85101545075 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1016/j.jmaa.2021.125090 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/7266 | |
dc.identifier.volume | 500 | en_US |
dc.identifier.wos | WOS:000634827700010 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Academic Press inc Elsevier Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Locally Compact (Abelian) Group | en_US |
dc.subject | Group Algebra | en_US |
dc.subject | Measure Algebra | en_US |
dc.subject | Convolution Operator | en_US |
dc.subject | Regular Matrix | en_US |
dc.subject | Mean Ergodic Theorem | en_US |
dc.title | Mean Ergodic Theorems for Power Bounded Measures | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |