A Robust Numerical Technique for Solving Non-Linear Volterra Integro-Differential Equations With Boundary Layer
dc.authorscopusid | 57219748527 | |
dc.authorscopusid | 22133512500 | |
dc.authorscopusid | 57219543075 | |
dc.contributor.author | Cakir, Firat | |
dc.contributor.author | Cakir, Musa | |
dc.contributor.author | Cakir, Hayriye Guckir | |
dc.date.accessioned | 2025-05-10T17:13:48Z | |
dc.date.available | 2025-05-10T17:13:48Z | |
dc.date.issued | 2022 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Cakir, Firat] Batman Univ, Dept Math, Batman, Turkey; [Cakir, Musa] Van Yuzuncu Yil Univ, Dept Math, Van, Turkey; [Cakir, Hayriye Guckir] Adiyaman Univ, Dept Math, Adiyaman, Turkey | en_US |
dc.description.abstract | In this paper, we study a first-order non-linear singularly per-turbed Volterra integro-differential equation (SPVIDE). We discretize the problem by a uniform difference scheme on a Bakhvalov-Shishkin mesh. The scheme is constructed by the method of integral identities with expo-nential basis functions and integral terms are handled with interpolating quadrature rules with remainder terms. An effective quasi-linearization technique is employed for the algorithm. We establish the error estimates and demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N-1) uniformly convergent, where N is the mesh parameter. The numerical re-sults on a couple of examples are also provided to confirm the theoretical analysis. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.4134/CKMS.c210261 | |
dc.identifier.endpage | 955 | en_US |
dc.identifier.issn | 1225-1763 | |
dc.identifier.issn | 2234-3024 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85135529154 | |
dc.identifier.scopusquality | Q4 | |
dc.identifier.startpage | 939 | en_US |
dc.identifier.uri | https://doi.org/10.4134/CKMS.c210261 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/8303 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000880304500023 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Korean Mathematical Soc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Singularly Perturbed | en_US |
dc.subject | Vide | en_US |
dc.subject | Difference Schemes | en_US |
dc.subject | Uniform Con-Vergence | en_US |
dc.subject | Error Estimates | en_US |
dc.subject | Bakhvalov-Shishkin Mesh | en_US |
dc.title | A Robust Numerical Technique for Solving Non-Linear Volterra Integro-Differential Equations With Boundary Layer | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |