Units in Z(Cn X C5)
| dc.authorscopusid | 56976417200 | |
| dc.authorscopusid | 19639133400 | |
| dc.contributor.author | Küsmüş, O. | |
| dc.contributor.author | Low, R.M. | |
| dc.date.accessioned | 2025-05-10T16:43:47Z | |
| dc.date.available | 2025-05-10T16:43:47Z | |
| dc.date.issued | 2020 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | Küsmüş O., Department of Mathematics, Van Yüzüncü Yıl University, Van, Turkey; Low R.M., Department of Mathematics, San Jose State University, CA, United States | en_US |
| dc.description.abstract | Let G be a group. Characterization of units in integral group ring ZG is a classical open problem for various groups explicitly. In this work, we shall introduce a subgroup of unit group in the integral group ring of the direct product which is defined as in terms of the unit group in integral group ring of Cn. © Palestine Polytechnic University-PPU 2020. | en_US |
| dc.identifier.endpage | 395 | en_US |
| dc.identifier.issn | 2219-5688 | |
| dc.identifier.issue | 1 | en_US |
| dc.identifier.scopus | 2-s2.0-85094587108 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 386 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/293 | |
| dc.identifier.volume | 9 | en_US |
| dc.identifier.wosquality | N/A | |
| dc.language.iso | en | en_US |
| dc.publisher | Palestine Polytechnic University | en_US |
| dc.relation.ispartof | Palestine Journal of Mathematics | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Direct Product | en_US |
| dc.subject | Group Ring | en_US |
| dc.subject | Integral Group Ring | en_US |
| dc.subject | Unit Group | en_US |
| dc.title | Units in Z(Cn X C5) | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |