Sharp Inequalities for Factorial N
No Thumbnail Available
Date
2008
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Catolica del Norte
Abstract
Let n be a positive integer. We prove nn+1e-n√2π/√n-α ≤ n! < nn+1e-n2√2π/√n-β with the best possible constants α = 1- 2π-2 = 0.149663... and β = 1/6 = 0.1666666... This refines and extends a result of Sandor and Debnath, who proved that the double inequality holds with α = 0 and β = 1.
Description
Keywords
Burnside'S Formula, Factorial N, Gamma Function, Stirling'S
Turkish CoHE Thesis Center URL
WoS Q
N/A
Scopus Q
Q3
Source
Proyecciones
Volume
27
Issue
1
Start Page
97
End Page
102