Dissipative Operators on Banach Spaces

dc.authorscopusid 25123084500
dc.contributor.author Mustafayev, Heybetkulu
dc.date.accessioned 2025-05-10T17:29:48Z
dc.date.available 2025-05-10T17:29:48Z
dc.date.issued 2007
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Yuzuncu Yil Univ, Fac Arts & Sci, TR-65080 Van, Turkey en_US
dc.description.abstract A bounded linear operator T on a Banach space is said to be dissipative if parallel to e(tT)parallel to <= 1 for all t >= 0. We show that if T is a dissipative operator on a Banach space, then: (a)lim(t)->infinity parallel to e(tT) T parallel to = {vertical bar lambda vertical bar: lambda epsilon sigma (T) boolean AND i R} (b) If sigma (T) boolean AND i R is contained in [-i pi/2, i pi/2], then [GRAPHICS] Some related problems are also discussed. (c) 2007 Elsevier Inc. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.jfa.2007.02.004
dc.identifier.endpage 447 en_US
dc.identifier.issn 0022-1236
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-34249665653
dc.identifier.scopusquality Q1
dc.identifier.startpage 428 en_US
dc.identifier.uri https://doi.org/10.1016/j.jfa.2007.02.004
dc.identifier.uri https://hdl.handle.net/20.500.14720/12471
dc.identifier.volume 248 en_US
dc.identifier.wos WOS:000247706100006
dc.identifier.wosquality Q1
dc.institutionauthor Mustafayev, Heybetkulu
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Hermitian Operator en_US
dc.subject Dissipative Operator en_US
dc.subject (Local) Spectrum en_US
dc.subject Fourier Transform en_US
dc.title Dissipative Operators on Banach Spaces en_US
dc.type Article en_US
dspace.entity.type Publication

Files