On Statistical Convergence

dc.contributor.advisor Kara, Y. Hasan
dc.contributor.author Çiftçi, İdris
dc.date.accessioned 2025-06-30T15:35:49Z
dc.date.available 2025-06-30T15:35:49Z
dc.date.issued 2005
dc.department Fen Bilimleri Enstitüsü / Matematik Ana Bilim Dalı
dc.description.abstract ÖZETİSTATİSTİKSEL YAKINSAKLIK ÜZERİNEÇİFTÇİ, İdrisYüksek Lisans Tezi , Matematik Anabilim DalıTez Danışmanı: Yrd. Doç. Dr. Hasan KARAEylül 2005, 61 sayfaBu çalışmanın amacı, dizi uzaylarında yakınsaklık kavramıyla bağlantılıolan istatistiksel yakınsaklık kavramını pek çok yönüyle ele alarak açıklamaktır. Busebeple; ilk olarak bu kavramla ilişkili temel tanım, teorem ve diğer ön bilgilerverilmiştir. Daha sonra lacunary ve Cauchy anlamında istatistiksel yakınsamadurumları incelenerek lacunary ve Ön-Cauchy istatistikselliğin tanımı ve sonuçlarıele alınmıştır. Yine istatistiksel anlamda bir dizinin herhangi bir alt dizisininkarakterizasyonuna ilişkin ölçüm yapılmıştır. En sonunda da, olasılık sonuçlarınıkullanarak toplanabilmenin bir metodu olan yakınsaklığın bu özel tipini kullanmaksuretiyle birkaç Tauberian teoremi sunularak gösterilmiştir ki; klasik Tauberianteoremlerinin birçoğunu birleştirmek kadar geliştirmek içinde bu yol faydalı biraraçtır.Anahtar kelimeler : İstatistiksel yakınsaklık, Random davranış metotları,Hausdorff toplanabilirlik, Konvolüsyon metotları, Çember metotları.
dc.description.abstract ABSTRACTON STATISTICAL CONVERGENCEÇİFTÇİ, İdrisMsc, Mathematics ScienceSupervisor: Assist. Prof. Dr. Hasan KARASeptember 2005, 61 pagesThe purpose of this study is to explain to be deal with very much directionto concept statistical convergence which related to notation convergence in sequencespaces. Therefore, the first, they are given fundamental definition, theorem and otherpre-information?s connecting with this term. Thereafter, they are taken up itsdefinition and results of lacunary and pre-Cauchy statistically to be investigated itsconvergent conditions in lacunary and Cauchy sense. Next, it is measured tocorresponding its characterization of any subsequence of a sequence in statisticallysense. The latest, it is showed that this path is a useful tool both a lot of its toassociate and also to improve of classic Tauberian theorems and to be presentedsome Tauberian theorem with to be used to this special type of convergence which isa summability method to be utilized probability conclusions.Key words : Statistical convergence, Random walk methods, Hausdorffsummability, Convolution methods, Circle methods. en_US
dc.identifier.endpage 61
dc.identifier.uri https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=XohQ0H2mJnBfxLPsY8dG40HhdZXheorRPy6IVOOfBwwC7Qq2SwsiOl9poPb34c0D
dc.identifier.uri https://hdl.handle.net/20.500.14720/25778
dc.identifier.yoktezid 197610
dc.language.iso tr
dc.subject Matematik
dc.subject Mathematics en_US
dc.title On Statistical Convergence
dc.title İstatiksel Yakınsaklık Üzerine en_US
dc.type Master Thesis en_US
dspace.entity.type Publication

Files

Collections