Improving Pressure Drop Predictions for R134a Evaporation in Corrugated Vertical Tubes Using a Machine Learning Technique Trained With the Levenberg-Marquardt Method

dc.authorid Colak, Andac Batur/0000-0001-9297-8134
dc.authorid Bacak, Aykut/0000-0003-3157-1992
dc.authorid Dalkilic, Ahmet Selim/0000-0002-5743-3937
dc.authorscopusid 57216657788
dc.authorscopusid 58096915400
dc.authorscopusid 56800992900
dc.authorscopusid 36053402600
dc.authorscopusid 24479329000
dc.authorwosid Bacak, Aykut/Itv-6528-2023
dc.authorwosid Karakoyun, Yakup/Abe-7401-2020
dc.authorwosid Koca, Aliihsan/L-1389-2014
dc.authorwosid Colak, Andac Batur/Aav-3639-2020
dc.authorwosid Bacak, Aykut/G-3781-2018
dc.authorwosid Dalkilic, Ahmet Selim/G-2274-2011
dc.contributor.author Colak, Andac Batur
dc.contributor.author Bacak, Aykut
dc.contributor.author Karakoyun, Yakup
dc.contributor.author Koca, Aliihsan
dc.contributor.author Dalkilic, Ahmet Selim
dc.date.accessioned 2025-05-10T17:23:49Z
dc.date.available 2025-05-10T17:23:49Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Colak, Andac Batur] Istanbul Ticaret Univ, Informat Technol Applicat & Res Ctr, TR-34445 Istanbul, Turkiye; [Bacak, Aykut; Dalkilic, Ahmet Selim] Yildiz Tech Univ YTU, Fac Mech Engn, Dept Mech Engn, TR-34349 Istanbul, Turkiye; [Karakoyun, Yakup] Van Yuzuncu Yil Univ, Engn Fac, Dept Mech Engn, TR-65080 Van, Turkiye; [Koca, Aliihsan] Istanbul Tech Univ ITU, Fac Mech Engn, Dept Mech Engn, TR-34437 Istanbul, Turkiye en_US
dc.description Colak, Andac Batur/0000-0001-9297-8134; Bacak, Aykut/0000-0003-3157-1992; Dalkilic, Ahmet Selim/0000-0002-5743-3937 en_US
dc.description.abstract The present investigation utilized a machine learning structure to ascertain the pressure drop in vertically positioned, corrugated copper tubes during the evaporation process of R134a. The evaporator was a counter-flow heat exchanger, in which R134a flowed in the inner corrugated tube and hot water flowed in the smooth annulus. Different evaporation mass fluxes (195-406 kg m-2 s-1) and heat fluxes (10.16-66.61 kW m-2) were used with artificial neural networks at different corrugation depths. A multilayer perceptron artificial neural network model with 13 neurons in the hidden layer was proposed. Tan-Sig and Purelin transfer functions were used in the network model developed with the Levenberg-Marquardt training algorithm. The dataset, which consisted of 252 data points, related to the evaporation process, was divided into training (70%), validation (15%), and testing (15%) groups in an arbitrary manner. The artificial neural network model has been demonstrated to effectively forecast the pressure drop that occurs during evaporation. The mean squared error was computed for the Delta P values observed during the evaporation processes, yielding a value of 1.96E-03. The artificial neural network exhibited a high correlation coefficient value of 0.94479. The estimation fluctuations exhibited a range of +/- 10%, whereas the experimental and anticipated Delta P data demonstrated a divergence of +/- 10.3%. en_US
dc.description.sponsorship Istanbul Commerce University en_US
dc.description.sponsorship The fifth author thanks KMUTT for the support during his post-Ph.D. and several research visits to KMUTT. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s10973-024-13082-y
dc.identifier.endpage 5509 en_US
dc.identifier.issn 1388-6150
dc.identifier.issn 1588-2926
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85191173218
dc.identifier.scopusquality Q1
dc.identifier.startpage 5497 en_US
dc.identifier.uri https://doi.org/10.1007/s10973-024-13082-y
dc.identifier.uri https://hdl.handle.net/20.500.14720/11009
dc.identifier.volume 149 en_US
dc.identifier.wos WOS:001207611900002
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Evaporation en_US
dc.subject Pressure Drop en_US
dc.subject Levenberg-Marquardt en_US
dc.subject Machine Learning en_US
dc.title Improving Pressure Drop Predictions for R134a Evaporation in Corrugated Vertical Tubes Using a Machine Learning Technique Trained With the Levenberg-Marquardt Method en_US
dc.type Article en_US
dspace.entity.type Publication

Files