YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Ssc: Clustering of Turkish Texts by Spectral Graph Partitioning

dc.authorid Uckan, Taner/0000-0001-5385-6775
dc.authorid Karci, Ali/0000-0002-8489-8617
dc.authorwosid Karci, Ali/Aag-5337-2019
dc.authorwosid Uckan, Taner/Izp-9705-2023
dc.contributor.author Uckan, Taner
dc.contributor.author Hark, Cengiz
dc.contributor.author Karci, Ali
dc.date.accessioned 2025-05-10T17:13:35Z
dc.date.available 2025-05-10T17:13:35Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Uckan, Taner] Van Yuzuncu Yil Univ, Baskale Meslek Yuksek Okulu, Bilgisayar Programciligi Bolumu, Van, Turkey; [Hark, Cengiz] Turgut OZAL Univ, Muhendislik Fak, Yazilim Muh Bolumu, Ankara, Turkey; [Karci, Ali] Inonu Univ, Muhendislik Fak, Bilgisayar Muh Bolumu, Malatya, Turkey en_US
dc.description Uckan, Taner/0000-0001-5385-6775; Karci, Ali/0000-0002-8489-8617 en_US
dc.description.abstract There is growing interest in studies on text classification as a result of the exponential increase in the amount of data available. Many studies have been conducted in the field of text clustering, using different approaches. This study introduces Spectral Sentence Clustering (SSC) for text clustering problems, which is an unsupervised method based on graph-partitioning. The study explains how the proposed model proposed can be used in natural language applications to successfully cluster texts. A spectral graph theory method is used to partition the graph into non-intersecting sub-graphs, and an unsupervised and efficient solution is offered for the text clustering problem by providing a physical representation of the texts. Finally, tests have been conducted demonstrating that SSC can be successfully used for text categorization. A clustering success rate of 97.08% was achieved in tests conducted using the TTC-3600 dataset, which contains open-access unstructured Turkish texts, classified into categories. The SSC model proposed performed better compared to a popular k-means clustering algorithm. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.2339/politeknik.684558
dc.identifier.endpage 1444 en_US
dc.identifier.issn 1302-0900
dc.identifier.issn 2147-9429
dc.identifier.issue 4 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 1433 en_US
dc.identifier.uri https://doi.org/10.2339/politeknik.684558
dc.identifier.uri https://hdl.handle.net/20.500.14720/8227
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000762330700011
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.publisher Gazi Univ en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Graph Partitioning en_US
dc.subject Spectral Graph Theory en_US
dc.subject Binary Text Clustering en_US
dc.subject Text Categorization en_US
dc.subject Text Mining en_US
dc.title Ssc: Clustering of Turkish Texts by Spectral Graph Partitioning en_US
dc.type Article en_US

Files