YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparison of Swarm-Based Metaheuristic and Gradient Descent-Based Algorithms in Artif Icial Neural Network Training

dc.authorid Izci, Davut/0000-0001-8359-0875
dc.authorscopusid 57211714693
dc.authorscopusid 26031603700
dc.authorscopusid 57186395300
dc.authorscopusid 57201318149
dc.authorwosid Ekinci, Serdar/Aaa-7422-2019
dc.authorwosid Kayri, Murat/Hlh-4902-2023
dc.authorwosid Eker, Erdal/Hkn-7889-2023
dc.authorwosid Izci, Davut/T-6000-2019
dc.contributor.author Eker, Erdal
dc.contributor.author Kayri, Murat
dc.contributor.author Ekinci, Serdar
dc.contributor.author Izci, Davut
dc.date.accessioned 2025-05-10T17:20:19Z
dc.date.available 2025-05-10T17:20:19Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Eker, Erdal] Mus Alparslan Univ, Vocat Sch Social Sci, Mus, Turkiye; [Kayri, Murat] Van Yuzuncu Yil Univ, Dept Comp & Instruct Technol Educ, Van, Turkiye; [Ekinci, Serdar; Izci, Davut] Batman Univ, Dept Comp Engn, Batman, Turkiye; [Izci, Davut] Middle East Univ, MEU Res Unit, Amman, Jordan en_US
dc.description Izci, Davut/0000-0001-8359-0875 en_US
dc.description.abstract This paper aims to compare the gradient descent-based algorithms under classical training model and swarm-based metaheuristic algorithms in feed forward backpropagation artificial neural network training. Batch weight and bias rule, Bayesian regularization, cyclical weight and bias rule and Levenberg-Marquardt algorithms are used as the classical gradient descentbased algorithms. In terms of the swarm-based metaheuristic algorithms, hunger games search, gray wolf optimizer, Archimedes optimization, and the Aquila optimizer are adopted. The Iris data set is used in this paper for the training. Mean square error, mean absolute error and determination coefficient are used as statistical measurement techniques to determine the effect of the network architecture and the adopted training algorithm. The metaheuristic algorithms are shown to have superior capability over the gradient descent-based algorithms in terms of artificial neural network training. In addition to their success in error rates, the classification capabilities of the metaheuristic algorithms are also observed to be in the range of 94%-97%. The hunger games search algorithm is also observed for its specific advantages amongst the metaheuristic algorithms as it maintains good performance in terms of classification ability and other statistical measurements. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.14201/adcaij.29969
dc.identifier.issn 2255-2863
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85174840520
dc.identifier.scopusquality Q4
dc.identifier.uri https://doi.org/10.14201/adcaij.29969
dc.identifier.uri https://hdl.handle.net/20.500.14720/10061
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:001072782200001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ediciones Univ Salamanca en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Classification en_US
dc.subject Swarm-Based Metaheuristic Algorithms en_US
dc.subject Gradient Descent-Based Algorithm en_US
dc.subject Artificial Neural Networks en_US
dc.title Comparison of Swarm-Based Metaheuristic and Gradient Descent-Based Algorithms in Artif Icial Neural Network Training en_US
dc.type Article en_US

Files