YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

New Solitary Wave Structures To the (2+1)-Dimensional Kd and Kp Equations With Spatio-Temporal Dispersion

dc.authorid Alam, Prof. Dr. Md. Nur/0000-0001-6815-678X
dc.authorscopusid 55979705100
dc.authorscopusid 6603328862
dc.authorwosid Alam, Prof. Dr. Md. Nur/T-7027-2019
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Alam, Md Nur
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-05-10T17:07:44Z
dc.date.available 2025-05-10T17:07:44Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Alam, Md Nur] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China; [Alam, Md Nur] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkey en_US
dc.description Alam, Prof. Dr. Md. Nur/0000-0001-6815-678X en_US
dc.description.abstract The present paper studies the novel generalized (G'/G)-expansion technique to two nonlinear evolution equations: The (2 + 1)-dimensional Konopelchenko-Dubrovsky (KD) equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation and acquires some new exact answers. The secured answers include a particular variety of solitary wave solutions, such as periodic, compaction, cuspon, kink, soliton, a bright periodic wave, Bell shape soliton, dark periodic wave and various kinds of soliton of the studied equation are achieved. These new particular kinds of solitary wave solutions will improve the earlier solutions and help us understand the physical meaning further and interpret the nonlinear generation of nonlinear wave equations of fluid in an elastic tube and liquid, including small bubbles and turbulence and the acoustic dust waves in dusty plasmas. Additionally, the studied approach could also be employed to obtain exact wave solutions for the other nonlinear evolution equations in applied sciences. (c) 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). en_US
dc.description.sponsorship CAS-TWAS presidents fellowship program en_US
dc.description.sponsorship The authors would like to acknowledge CAS-TWAS presidents fellowship program. The authors of this paper would like to express their sincere appreciation to the dear anonymous editor and referees for their valuable comments and suggestions which have led to an improvement in the presentation of the paper. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.jksus.2020.09.027
dc.identifier.endpage 3409 en_US
dc.identifier.issn 1018-3647
dc.identifier.issn 2213-686X
dc.identifier.issue 8 en_US
dc.identifier.scopus 2-s2.0-85095606360
dc.identifier.scopusquality Q1
dc.identifier.startpage 3400 en_US
dc.identifier.uri https://doi.org/10.1016/j.jksus.2020.09.027
dc.identifier.uri https://hdl.handle.net/20.500.14720/6866
dc.identifier.volume 32 en_US
dc.identifier.wos WOS:000590879300002
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Novel Generalized (G '/G)-Expansion Method Br en_US
dc.subject The (2+1)-Dimensional Kp Equation Br en_US
dc.subject The (2+1)-Dimensional Kd Equation Br en_US
dc.subject Nonlinear Partial Differential Equation en_US
dc.subject Exact Solutions en_US
dc.title New Solitary Wave Structures To the (2+1)-Dimensional Kd and Kp Equations With Spatio-Temporal Dispersion en_US
dc.type Article en_US

Files