YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of Distributed Bearing Faults Using a Novel Sensory Board and Deep Learning Networks With Hybrid Inputs

dc.authorid Rajabioun, Ramin/0000-0003-3972-6442
dc.authorid Afshar, Mojtaba/0000-0002-6173-0440
dc.authorscopusid 25522873900
dc.authorscopusid 57216616671
dc.authorscopusid 37030525400
dc.authorscopusid 12751927000
dc.authorscopusid 6701387497
dc.authorwosid Rajabioun, Ramin/Koz-8963-2024
dc.authorwosid Atan, Özkan/Aab-7197-2020
dc.authorwosid Mete, Mutlu/Aae-7023-2021
dc.contributor.author Rajabioun, Ramin
dc.contributor.author Afshar, Mojtaba
dc.contributor.author Atan, Ozkan
dc.contributor.author Mete, Mutlu
dc.contributor.author Akin, Bilal
dc.date.accessioned 2025-05-10T17:22:51Z
dc.date.available 2025-05-10T17:22:51Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Rajabioun, Ramin; Atan, Ozkan] Yuzuncu Yil Univ, TR-65090 Van, Turkiye; [Afshar, Mojtaba; Akin, Bilal] Univ Texas Dallas, Richardson, TX 75080 USA; [Mete, Mutlu] Texas A&M Univ, Commerce, TX 75428 USA en_US
dc.description Rajabioun, Ramin/0000-0003-3972-6442; Afshar, Mojtaba/0000-0002-6173-0440 en_US
dc.description.abstract Distributed bearing faults are the most common ones in industry and create random vibration patterns, which make their detection difficult. They are caused by lubrication issues, contamination issues, electrical erosion, bearing roughness, or the spread of a local fault. This research mainly focuses on the distrusted bearing faults diagnosis using a multi-sensory kit. For this purpose, a novel deep-learning framework is proposed to detect these faults using 3 axis vibrations and one stray magnetic flux signal. The data is collected at 50 operating points, i.e., 10 speed and 5 torque levels. The proposed architecture benefits from a multi-input pipeline consisting of time-frame signals and extracted features. A feature-rich architecture is proposed combining convolutional and high-level information. Although a deep learning structure coherently learns from the features through convolutional and LSTM layers, 20 predefined features sampled from each instance are also fed into the network to improve accuracy. The robustness of the overall system is validated with train/test split data. Deep learning results are compared with two more classification algorithms, SVM and XGBoost. The high accuracy of the proposed model demonstrates the superiority of the deep learning architecture for distributed bearing fault detection. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1109/TEC.2023.3338447
dc.identifier.endpage 973 en_US
dc.identifier.issn 0885-8969
dc.identifier.issn 1558-0059
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85184802613
dc.identifier.scopusquality Q1
dc.identifier.startpage 963 en_US
dc.identifier.uri https://doi.org/10.1109/TEC.2023.3338447
dc.identifier.uri https://hdl.handle.net/20.500.14720/10708
dc.identifier.volume 39 en_US
dc.identifier.wos WOS:001230194500001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature Extraction en_US
dc.subject Vibrations en_US
dc.subject Fault Diagnosis en_US
dc.subject Dc Motors en_US
dc.subject Convolution en_US
dc.subject Brushless Dc Motors en_US
dc.subject Induction Motors en_US
dc.subject Bearing Fault Detection en_US
dc.subject Convolutional Neural Network (Cnn) en_US
dc.subject Deep Learning en_US
dc.subject And Distributed Faults en_US
dc.title Classification of Distributed Bearing Faults Using a Novel Sensory Board and Deep Learning Networks With Hybrid Inputs en_US
dc.type Article en_US

Files