Hyers-Ulam Stability of Some Boundary-Value Problems
Abstract
Bu tez çalışmasında, bazı sınır-değer problemlerinin Hyers-Ulam kararlılığı ve Hyers-Ulam-Rassias kararlılığı incelendi. İlk olarak lineer olmayan iki-nokta sınır-değer probleminin kararlılığı bir genelleşmiş sabit nokta teoremi kullanılarak ispatlandı, ve daha sonra ağırlıklı uzay yöntemi adı verilen bir yöntem kullanılarak Hyers-Ulam-Rassias kararlılığa sahip olduğu gösterildi. İkinci olarak integral sınır koşullu lineer olmayan bir sınır-değer probleminin kararlılığı aynı yöntemler kullanılarak ispatlandı. Anahtar sözcükler: Ağırlıklı uzay yöntemi, Hyers-Ulam kararlılık, Hyers-Ulam-Rassias kararlılık, Sabit nokta teoremi, Sınır-değer problemi
In this thesis, the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of some boundary-value problems are studied. Firstly, stability of nonlinear two-point boundary-value problem is proved by using a generalized fixed point theorem, and then it is showed that the problem has the Hyers-Ulam-Rassias stability by using a method called weighted space method. Secondly, stability of a nonlinear boundary-value problem with integral boundary condition is proved by using same methods. Keywords: Boundary-value problem, Fixed point theorem, Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Weighted space method
In this thesis, the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of some boundary-value problems are studied. Firstly, stability of nonlinear two-point boundary-value problem is proved by using a generalized fixed point theorem, and then it is showed that the problem has the Hyers-Ulam-Rassias stability by using a method called weighted space method. Secondly, stability of a nonlinear boundary-value problem with integral boundary condition is proved by using same methods. Keywords: Boundary-value problem, Fixed point theorem, Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Weighted space method
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
67