YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bounds on Partition Dimension of Peterson Graphs

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Abstract

The distance of a connected, simple graph P is denoted by d(eta(1), eta(2)), which is the length of a shortest path between the vertices eta(1), eta(2) is an element of V(P), where V(P) is the vertex set of P. The l- ordered partition of V(P) is theta = (theta(1), theta(2), ..., theta(t)}. A vertex eta is an element of V(P), and r(eta vertical bar theta) = {d(eta, theta(1)), d(eta, theta(2)), ...., d(eta, theta(t))} be a l - tuple distances, where r(eta vertical bar theta) is the representation of a vertex eta with respect to set theta. If r(eta vertical bar theta) of eta is unique, for every pair of vertices, then theta is the resolving partition set of V(P). The minimum number l in the resolving partition set theta is known as partition dimension (pd(P)). In this paper, we studied the generalized families of Peterson graph, P-lambda,P-lambda-1 and proved that these families have bounded partition dimension.

Description

Nadeem, Muhammad Faisal/0000-0002-3175-7191; Farahani, Mohammad Reza/0000-0003-2969-4280; Azeem, Muhammad/0000-0001-5181-4221; Khalaf, Abdul Jalil M./0000-0002-2447-6666

Keywords

Generalized Peterson Graph, Partition Dimension, Partition Resolving Set, Sharp Bounds Of Partition Dimension

Turkish CoHE Thesis Center URL

WoS Q

N/A

Scopus Q

N/A

Source

Volume

42

Issue

7

Start Page

1569

End Page

1588