YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bounds on Partition Dimension of Peterson Graphs

dc.authorid Nadeem, Muhammad Faisal/0000-0002-3175-7191
dc.authorid Farahani, Mohammad Reza/0000-0003-2969-4280
dc.authorid Azeem, Muhammad/0000-0001-5181-4221
dc.authorid Khalaf, Abdul Jalil M./0000-0002-2447-6666
dc.authorwosid Cancan, Murat/Aab-4391-2020
dc.authorwosid Azeem, Muhammad/Agq-2211-2022
dc.authorwosid Nadeem, Muhammad/Aat-4639-2020
dc.authorwosid Khalaf, Abdul Jalil/G-5990-2011
dc.authorwosid Nadeem, Muhammad Faisal/Abb-8854-2020
dc.authorwosid Farahani, Mohammad Reza/M-5963-2017
dc.contributor.author Khalaf, Abdul Jalil M.
dc.contributor.author Nadeem, Muhammad Faisal
dc.contributor.author Azeem, Muhammasd
dc.contributor.author Cancan, Murat
dc.contributor.author Farahani, Mohammad Reza
dc.date.accessioned 2025-05-10T17:14:47Z
dc.date.available 2025-05-10T17:14:47Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Khalaf, Abdul Jalil M.] Univ Kufa, Fac Comp Sci & Math, Dept Math, Najaf, Iraq; [Nadeem, Muhammad Faisal] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan; [Azeem, Muhammasd] Univ Putra Malaysia, Fac Engn, Dept Aerosp Engn, Seri Kembangan, Malaysia; [Cancan, Murat] Van Yuzuncu Yil Univ, Fac Educ, Van, Turkey; [Farahani, Mohammad Reza] Iran Univ Sci & Technol Narmak, Dept Math, Tehran, Iran en_US
dc.description Nadeem, Muhammad Faisal/0000-0002-3175-7191; Farahani, Mohammad Reza/0000-0003-2969-4280; Azeem, Muhammad/0000-0001-5181-4221; Khalaf, Abdul Jalil M./0000-0002-2447-6666 en_US
dc.description.abstract The distance of a connected, simple graph P is denoted by d(eta(1), eta(2)), which is the length of a shortest path between the vertices eta(1), eta(2) is an element of V(P), where V(P) is the vertex set of P. The l- ordered partition of V(P) is theta = (theta(1), theta(2), ..., theta(t)}. A vertex eta is an element of V(P), and r(eta vertical bar theta) = {d(eta, theta(1)), d(eta, theta(2)), ...., d(eta, theta(t))} be a l - tuple distances, where r(eta vertical bar theta) is the representation of a vertex eta with respect to set theta. If r(eta vertical bar theta) of eta is unique, for every pair of vertices, then theta is the resolving partition set of V(P). The minimum number l in the resolving partition set theta is known as partition dimension (pd(P)). In this paper, we studied the generalized families of Peterson graph, P-lambda,P-lambda-1 and proved that these families have bounded partition dimension. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1080/02522667.2021.1936902
dc.identifier.endpage 1588 en_US
dc.identifier.issn 0252-2667
dc.identifier.issn 2169-0103
dc.identifier.issue 7 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 1569 en_US
dc.identifier.uri https://doi.org/10.1080/02522667.2021.1936902
dc.identifier.uri https://hdl.handle.net/20.500.14720/8437
dc.identifier.volume 42 en_US
dc.identifier.wos WOS:000718679800001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Generalized Peterson Graph en_US
dc.subject Partition Dimension en_US
dc.subject Partition Resolving Set en_US
dc.subject Sharp Bounds Of Partition Dimension en_US
dc.title Bounds on Partition Dimension of Peterson Graphs en_US
dc.type Article en_US

Files