On Stability of a Class of Second Alpha-Order Fractal Differential Equations
dc.authorid | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | |
dc.authorscopusid | 6603328862 | |
dc.authorscopusid | 25122552100 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
dc.contributor.author | Tunc, Cemil | |
dc.contributor.author | Golmankhaneh, Alireza Khalili | |
dc.date.accessioned | 2025-05-10T17:36:18Z | |
dc.date.available | 2025-05-10T17:36:18Z | |
dc.date.issued | 2020 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey; [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Urmia Branch, Young Researchers & Elite Club, Orumiyeh, Iran | en_US |
dc.description | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | en_US |
dc.description.abstract | In this paper, we give a review of fractal calculus which is an expansion of standard calculus. Fractal calculus is applied for functions that are not differentiable or integrable on totally disconnected fractal sets such as middle-mu Cantor sets. Analogues of the Lyapunov functions and their features are given for asymptotic behaviors of fractal differential equations. The stability of fractal differentials in the sense of Lyapunov is defined. For the suggested fractal differential equations, sufficient conditions for the stability and uniform boundedness and convergence of the solutions are presented and proved. We present examples and graphs for more details of the results. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) (2221-Fellowships for Visiting Scientists and Scientists on Sabbatical Leave period) [2221-2018/3] | en_US |
dc.description.sponsorship | This research was completed with the support of the Scientific and Technological Research Council of Turkey (TUBITAK) (2221-Fellowships for Visiting Scientists and Scientists on Sabbatical Leave 2221-2018/3 period) when Alireza Khalili Golmankhaneh was a visiting scholar at Van Yuzuncu Yil University, Van, Turkey. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.3934/math.2020141 | |
dc.identifier.endpage | 2142 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85083094176 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 2126 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2020141 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/14040 | |
dc.identifier.volume | 5 | en_US |
dc.identifier.wos | WOS:000520850800031 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Fractal Calculus | en_US |
dc.subject | Staircase Function | en_US |
dc.subject | Cantor-Like Sets | en_US |
dc.subject | Fractal Stability | en_US |
dc.subject | Fractal Convergence | en_US |
dc.title | On Stability of a Class of Second Alpha-Order Fractal Differential Equations | en_US |
dc.type | Article | en_US |