YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Design of Morlet Wavelet Neural Network for Solving a Class of Singular Pantograph Nonlinear Differential Models

dc.authorid Nisar, Dr. Kashif/0000-0001-8092-4665
dc.authorid Haque, Muhammad Reazul/0000-0003-3531-220X
dc.authorid Rawat, Danda B./0000-0003-3638-3464
dc.authorid Raja, Muhammad Asif Zahoor/0000-0001-9953-822X
dc.authorid Sabir, Zulqurnain/0000-0001-7466-6233
dc.authorid Rodrigues, Joel/0000-0001-8657-3800
dc.authorscopusid 25825419000
dc.authorscopusid 56184182600
dc.authorscopusid 36739939800
dc.authorscopusid 23392655000
dc.authorscopusid 16309407500
dc.authorscopusid 57200169307
dc.authorscopusid 25930566300
dc.authorwosid Nisar, Kashif/Aaj-2423-2020
dc.authorwosid Sabir, Zulqurnain/Aas-8882-2021
dc.authorwosid Rodrigues, Joel/A-8103-2013
dc.authorwosid Haque, Muhammad Reazul/N-6468-2018
dc.authorwosid Rawat, Danda B./B-2973-2012
dc.authorwosid Raja, Muhammad Asif Zahoor/D-7325-2013
dc.contributor.author Nisar, Kashif
dc.contributor.author Sabir, Zulqurnain
dc.contributor.author Zahoor Raja, Muhammad Asif
dc.contributor.author Ag. Ibrahim, Ag. Asri
dc.contributor.author Erdogan, Fevzi
dc.contributor.author Haque, Muhammad Reazul
dc.contributor.author Rawat, Danda B.
dc.date.accessioned 2025-05-10T17:10:29Z
dc.date.available 2025-05-10T17:10:29Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Nisar, Kashif; Ag. Ibrahim, Ag. Asri] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu 88400, Sabah, Malaysia; [Sabir, Zulqurnain] Hazara Univ, Dept Math, Mansehra 21120, Pakistan; [Zahoor Raja, Muhammad Asif] COMSATS Univ Islamabad Attock, Dept Elect & Comp Engn, Attock 43600, Pakistan; [Zahoor Raja, Muhammad Asif] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan; [Erdogan, Fevzi] Yuzuzncu Yil Univ, Dept Math, TR-65080 Van, Turkey; [Haque, Muhammad Reazul] Multimedia Univ, Fac Comp & Informat, Cyberjaya 63100, Malaysia; [Rodrigues, Joel J. P. C.] Fed Univ Piaui UFPI, Postgrad Program Elect Engn, BR-64049550 Teresina, Brazil; [Rodrigues, Joel J. P. C.] Inst Telecomunicacoes, Covilha Delegat, P-6201001 Covilha, Portugal; [Rawat, Danda B.] Howard Univ, Dept Elect Engn & Comp Sci, Data Sci & Cybersecur Ctr, Washington, DC 20059 USA en_US
dc.description Nisar, Dr. Kashif/0000-0001-8092-4665; Haque, Muhammad Reazul/0000-0003-3531-220X; Rawat, Danda B./0000-0003-3638-3464; Raja, Muhammad Asif Zahoor/0000-0001-9953-822X; Sabir, Zulqurnain/0000-0001-7466-6233; Rodrigues, Joel/0000-0001-8657-3800 en_US
dc.description.abstract The aim of this study is to design a layer structure of feed-forward artificial neural networks using the Morlet wavelet activation function for solving a class of pantograph differential Lane-Emden models. The Lane-Emden pantograph differential equation is one of the important kind of singular functional differential model. The numerical solutions of the singular pantograph differential model are presented by the approximation capability of the Morlet wavelet neural networks (MWNNs) accomplished with the strength of global and local search terminologies of genetic algorithm (GA) and interior-point algorithm (IPA), i.e., MWNN-GAIPA. Three different problems of the singular pantograph differential models have been numerically solved by using the optimization procedures of MWNN-GAIPA. The correctness of the designed MWNN-GAIPA is observed by comparing the obtained results with the exact solutions. The analysis for 3, 6 and 60 neurons are also presented to check the stability and performance of the designed scheme. Moreover, different statistical analysis using forty number of trials is presented to check the convergence and accuracy of the proposed MWNN-GAIPA scheme. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1109/ACCESS.2021.3072952
dc.identifier.endpage 77862 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85104238081
dc.identifier.scopusquality Q1
dc.identifier.startpage 77845 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2021.3072952
dc.identifier.uri https://hdl.handle.net/20.500.14720/7440
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000673801900001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mathematical Model en_US
dc.subject Genetic Algorithms en_US
dc.subject Optimization en_US
dc.subject Numerical Models en_US
dc.subject Neurons en_US
dc.subject Sociology en_US
dc.subject Atmospheric Modeling en_US
dc.subject Pantograph en_US
dc.subject Singular en_US
dc.subject Artificial Neural Networks en_US
dc.subject Genetic Algorithms en_US
dc.subject Neuron Analysis en_US
dc.subject Interior-Point Algorithm en_US
dc.title Design of Morlet Wavelet Neural Network for Solving a Class of Singular Pantograph Nonlinear Differential Models en_US
dc.type Article en_US

Files