Classical Mechanics on Fractal Curves
dc.authorid | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | |
dc.authorscopusid | 25122552100 | |
dc.authorscopusid | 57221806321 | |
dc.authorscopusid | 6603328862 | |
dc.authorscopusid | 24171373800 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.authorwosid | Gasimov, Yusif/J-9597-2012 | |
dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
dc.contributor.author | Golmankhaneh, Alireza Khalili | |
dc.contributor.author | Welch, Kerri | |
dc.contributor.author | Tunc, Cemil | |
dc.contributor.author | Gasimov, Yusif S. | |
dc.date.accessioned | 2025-05-10T16:46:07Z | |
dc.date.available | 2025-05-10T16:46:07Z | |
dc.date.issued | 2023 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Artificial Intelligence & Big Data Automat Res Ct, Urmia Branch, Orumiyeh, Iran; [Welch, Kerri] Calif Inst Integral Studies, Fac, San Francisco, CA 94103 USA; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Gasimov, Yusif S.] Azerbaijan Univ, Jeyhun Hajibeyli Str 71, AZ-1007 Baku, Azerbaijan; [Gasimov, Yusif S.] Inst Math & Mech, B Vahabzade Str 9, AZ-1148 Baku, Azerbaijan; [Gasimov, Yusif S.] Baku State Univ, Inst Phys Problems, Z Khalilov Str 23, AZ-1148 Baku, Azerbaijan | en_US |
dc.description | Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 | en_US |
dc.description.abstract | Fractal analogue of Newton, Lagrange, Hamilton, and Appell's mechanics are suggested. The fractal alpha-velocity and alpha-acceleration are defined in order to obtain the Langevin equation on fractal curves. Using the Legendre transformation, Hamilton's mechanics on fractal curves is derived for modeling a non-conservative system on fractal curves with fractional dimensions. Fractal differential equations have solutions that are non-differentiable in the sense of ordinary derivatives and explain space and time with fractional dimensions. The illustrated examples with graphs present the details. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1140/epjs/s11734-023-00775-y | |
dc.identifier.endpage | 999 | en_US |
dc.identifier.issn | 1951-6355 | |
dc.identifier.issn | 1951-6401 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-85148351461 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 991 | en_US |
dc.identifier.uri | https://doi.org/10.1140/epjs/s11734-023-00775-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/1053 | |
dc.identifier.volume | 232 | en_US |
dc.identifier.wos | WOS:000936170600002 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Classical Mechanics on Fractal Curves | en_US |
dc.type | Article | en_US |