YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classical Mechanics on Fractal Curves

dc.authorid Khalili Golmankhaneh, Alireza/0000-0002-5008-0163
dc.authorscopusid 25122552100
dc.authorscopusid 57221806321
dc.authorscopusid 6603328862
dc.authorscopusid 24171373800
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.authorwosid Gasimov, Yusif/J-9597-2012
dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.contributor.author Golmankhaneh, Alireza Khalili
dc.contributor.author Welch, Kerri
dc.contributor.author Tunc, Cemil
dc.contributor.author Gasimov, Yusif S.
dc.date.accessioned 2025-05-10T16:46:07Z
dc.date.available 2025-05-10T16:46:07Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Artificial Intelligence & Big Data Automat Res Ct, Urmia Branch, Orumiyeh, Iran; [Welch, Kerri] Calif Inst Integral Studies, Fac, San Francisco, CA 94103 USA; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Gasimov, Yusif S.] Azerbaijan Univ, Jeyhun Hajibeyli Str 71, AZ-1007 Baku, Azerbaijan; [Gasimov, Yusif S.] Inst Math & Mech, B Vahabzade Str 9, AZ-1148 Baku, Azerbaijan; [Gasimov, Yusif S.] Baku State Univ, Inst Phys Problems, Z Khalilov Str 23, AZ-1148 Baku, Azerbaijan en_US
dc.description Khalili Golmankhaneh, Alireza/0000-0002-5008-0163 en_US
dc.description.abstract Fractal analogue of Newton, Lagrange, Hamilton, and Appell's mechanics are suggested. The fractal alpha-velocity and alpha-acceleration are defined in order to obtain the Langevin equation on fractal curves. Using the Legendre transformation, Hamilton's mechanics on fractal curves is derived for modeling a non-conservative system on fractal curves with fractional dimensions. Fractal differential equations have solutions that are non-differentiable in the sense of ordinary derivatives and explain space and time with fractional dimensions. The illustrated examples with graphs present the details. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1140/epjs/s11734-023-00775-y
dc.identifier.endpage 999 en_US
dc.identifier.issn 1951-6355
dc.identifier.issn 1951-6401
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85148351461
dc.identifier.scopusquality Q2
dc.identifier.startpage 991 en_US
dc.identifier.uri https://doi.org/10.1140/epjs/s11734-023-00775-y
dc.identifier.uri https://hdl.handle.net/20.500.14720/1053
dc.identifier.volume 232 en_US
dc.identifier.wos WOS:000936170600002
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Classical Mechanics on Fractal Curves en_US
dc.type Article en_US

Files