YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

B-Spline Curve Theory: an Overview and Applications in Real Life

dc.authorid Fayz-Al-Asad, Md./0000-0002-1240-4761
dc.authorscopusid 58696168800
dc.authorscopusid 55979705100
dc.authorscopusid 57210176032
dc.authorscopusid 59505976600
dc.authorscopusid 6603328862
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.authorwosid Fayz-Al-Asad/Aaz-7244-2020
dc.authorwosid Alam, Prof. Dr. Md. Nur/T-7027-2019
dc.contributor.author Hasan, Md. Shahid
dc.contributor.author Alam, Md. Nur
dc.contributor.author Fayz-Al-Asad, Md.
dc.contributor.author Muhammad, Noor
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-05-10T17:24:57Z
dc.date.available 2025-05-10T17:24:57Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Hasan, Md. Shahid; Alam, Md. Nur] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Fayz-Al-Asad, Md.] Amer Int Univ Bangladesh, Dept Math, Dhaka 1229, Bangladesh; [Muhammad, Noor] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China en_US
dc.description Fayz-Al-Asad, Md./0000-0002-1240-4761 en_US
dc.description.abstract This study commences by delving into B-spline curves, their essential properties, and their practical implementations in the real world. It also examines the role of knot vectors, control points, and de Boor's algorithm in creating an elegant and seamless curve. Beginning with an overview of B-spline curve theory, we delve into the necessary properties that make these curves unique. We explore their local control, smoothness, and versatility, making them well-suited for a wide range of applications. Furthermore, we examine some basic applications of B-spline curves, from designing elegant automotive curves to animating lifelike characters in the entertainment industry, making a significant impact. Utilizing the de Boor algorithm, we intricately shape the contours of everyday essentials by applying a series of control points in combination with a B-spline curve. In addition, we offer valuable insights into the diverse applications of B-spline curves in computer graphics, toy design, the electronics industry, architecture, manufacturing, and various engineering sectors. We highlight their practical utility in manipulating the shape and behavior of the curve, serving as a bridge between theory and application. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1515/nleng-2024-0054
dc.identifier.issn 2192-8010
dc.identifier.issn 2192-8029
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85214451022
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1515/nleng-2024-0054
dc.identifier.uri https://hdl.handle.net/20.500.14720/11226
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:001389589300001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject B-Spline Curves en_US
dc.subject Knot Vectors en_US
dc.subject Basis Functions en_US
dc.subject Control Points en_US
dc.subject De Boor Algorithm en_US
dc.subject Computer-Aided Design en_US
dc.subject 3D Modeling And Graphics en_US
dc.title B-Spline Curve Theory: an Overview and Applications in Real Life en_US
dc.type Article en_US

Files