YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Land Use/Cover Change Modelling in a Mediterranean Rural Landscape Using Multi-Layer Perceptron and Markov Chain (mlp-Mc)

dc.authorid Berberoglu, Zehra/0009-0001-6113-5799
dc.authorscopusid 57218319071
dc.authorscopusid 57207870334
dc.authorscopusid 24480415500
dc.authorscopusid 35200042700
dc.authorwosid Berberoglu, Suha/O-4805-2014
dc.authorwosid Satir, Onur/Q-7885-2018
dc.authorwosid Tanriover, Anil Akin/Jpy-0213-2023
dc.contributor.author Mirici, M. E.
dc.contributor.author Berberoglu, S.
dc.contributor.author Akin, A.
dc.contributor.author Satir, O.
dc.date.accessioned 2025-05-10T17:03:46Z
dc.date.available 2025-05-10T17:03:46Z
dc.date.issued 2018
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Mirici, M. E.; Berberoglu, S.] Cukurova Univ, Dept Landscape Architecture, TR-01330 Adana, Turkey; [Akin, A.] Bursa Tech Univ, Dept Reg & Urban Planning, TR-16330 Bursa, Turkey; [Satir, O.] Yuzuncu Yil Univ, Dept Landscape Architecture, TR-65080 Van, Turkey en_US
dc.description Berberoglu, Zehra/0009-0001-6113-5799 en_US
dc.description.abstract Mediterranean land use and land cover (LULC) have a very dynamic structure as a result of continuous transformation process due to anthropogenic effects and environmental gradients. LULC dynamics are important indicator of environmental condition in temporal and spatial scales. The aim of this paper was to simulate the future LULC of a Mediterranean type watershed located at the Eastern Mediterranean Region of Turkey by incorporating multi-layer perceptron (MLP), artificial neural network (ANN) and Markov chain (MC) approaches. Landsat TM/OLI images in 1990, 2003 and 2014 over the study area were classified using hybrid classification approach. The Kappa statistics of the hybrid classification that combines K-means, decision tree and object based classification method for these three images were 0.81, 0.85 and 0.87 respectively. The LULC map of 2014 was simulated using LULC maps of 1990 and 2003 for calibration and validation. The simulation results were compared with the actual 2014 LULC map to assess the accuracy of the simulation, and the rate of overlap was found as 89%. LULC map of 2025 was estimated using LULC maps of 2003 and 2014. These results indicated that, the area of bareground will reduce 13.31% whereas the rate of forest and agricultural area will increase 8.70% and 6.51% respectively. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.15666/aeer/1601_467486
dc.identifier.endpage 486 en_US
dc.identifier.issn 1589-1623
dc.identifier.issn 1785-0037
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85041700620
dc.identifier.scopusquality Q3
dc.identifier.startpage 467 en_US
dc.identifier.uri https://doi.org/10.15666/aeer/1601_467486
dc.identifier.uri https://hdl.handle.net/20.500.14720/5808
dc.identifier.volume 16 en_US
dc.identifier.wos WOS:000424382600030
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Aloki Applied Ecological Research and Forensic inst Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Land Use/Land Cover (Lulc) en_US
dc.subject Hybrid Classification en_US
dc.subject Change Detection en_US
dc.subject Multi-Layer Perceptron (Mlp) en_US
dc.subject Markov Chain en_US
dc.subject Future Prediction en_US
dc.title Land Use/Cover Change Modelling in a Mediterranean Rural Landscape Using Multi-Layer Perceptron and Markov Chain (mlp-Mc) en_US
dc.type Article en_US

Files