YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Analysis of Consumer Purchase Behavior Following Cart Addition in E-Commerce Utilizing Explainable Artificial Intelligence

dc.authorid Esmeli, Ramazan/0000-0002-2634-6224
dc.authorid Gokce, Aytac/0000-0001-6868-3408
dc.authorscopusid 57205761373
dc.authorscopusid 58315920200
dc.authorwosid Aytac/Mfk-1348-2025
dc.authorwosid Esmeli, Ramazan/Aae-4712-2020
dc.contributor.author Esmeli, Ramazan
dc.contributor.author Gokce, Aytac
dc.date.accessioned 2025-05-10T17:29:30Z
dc.date.available 2025-05-10T17:29:30Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Esmeli, Ramazan] Van Yuzuncu Yil Univ, Engn Fac, Dept Comp Engn, TR-65090 Van, Turkiye; [Gokce, Aytac] Natl Educ Turkiye, TR-06420 Ankara, Turkiye en_US
dc.description Esmeli, Ramazan/0000-0002-2634-6224; Gokce, Aytac/0000-0001-6868-3408 en_US
dc.description.abstract To optimize personalized offers and reduce cart abandonment, it is essential to understand customer behavior in e-commerce after products are added to the cart. Although purchase prediction models are well researched, session-level changes, including price variations, product category shifts, and geographical context, are less examined concerning their impact on machine learning models for predicting purchase behavior after cart additions. This study incorporates these factors into machine learning models to examine their impacts on predictions using explainable AI techniques. The comprehensive experimental results obtained from two datasets and eight models demonstrate that machine learning algorithms can achieve an F1 score of 89% in predicting purchase behavior following cart additions. This study highlights the significant impact of session-specific factors, like price fluctuations, category transitions, and geographical context, coupled with consumers' previous browsing patterns, on model predictions. en_US
dc.description.woscitationindex Social Science Citation Index
dc.identifier.doi 10.3390/jtaer20010028
dc.identifier.issn 0718-1876
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-105001323421
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.3390/jtaer20010028
dc.identifier.uri https://hdl.handle.net/20.500.14720/12377
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:001453280400001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cart Abandonment en_US
dc.subject Purchase Prediction en_US
dc.subject Price Changes en_US
dc.subject Product Category Shifts en_US
dc.subject Geographic Context en_US
dc.subject Machine Learning Techniques en_US
dc.title An Analysis of Consumer Purchase Behavior Following Cart Addition in E-Commerce Utilizing Explainable Artificial Intelligence en_US
dc.type Article en_US

Files