An Analysis of Consumer Purchase Behavior Following Cart Addition in E-Commerce Utilizing Explainable Artificial Intelligence
dc.authorid | Esmeli, Ramazan/0000-0002-2634-6224 | |
dc.authorid | Gokce, Aytac/0000-0001-6868-3408 | |
dc.authorscopusid | 57205761373 | |
dc.authorscopusid | 58315920200 | |
dc.authorwosid | Aytac/Mfk-1348-2025 | |
dc.authorwosid | Esmeli, Ramazan/Aae-4712-2020 | |
dc.contributor.author | Esmeli, Ramazan | |
dc.contributor.author | Gokce, Aytac | |
dc.date.accessioned | 2025-05-10T17:29:30Z | |
dc.date.available | 2025-05-10T17:29:30Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Esmeli, Ramazan] Van Yuzuncu Yil Univ, Engn Fac, Dept Comp Engn, TR-65090 Van, Turkiye; [Gokce, Aytac] Natl Educ Turkiye, TR-06420 Ankara, Turkiye | en_US |
dc.description | Esmeli, Ramazan/0000-0002-2634-6224; Gokce, Aytac/0000-0001-6868-3408 | en_US |
dc.description.abstract | To optimize personalized offers and reduce cart abandonment, it is essential to understand customer behavior in e-commerce after products are added to the cart. Although purchase prediction models are well researched, session-level changes, including price variations, product category shifts, and geographical context, are less examined concerning their impact on machine learning models for predicting purchase behavior after cart additions. This study incorporates these factors into machine learning models to examine their impacts on predictions using explainable AI techniques. The comprehensive experimental results obtained from two datasets and eight models demonstrate that machine learning algorithms can achieve an F1 score of 89% in predicting purchase behavior following cart additions. This study highlights the significant impact of session-specific factors, like price fluctuations, category transitions, and geographical context, coupled with consumers' previous browsing patterns, on model predictions. | en_US |
dc.description.woscitationindex | Social Science Citation Index | |
dc.identifier.doi | 10.3390/jtaer20010028 | |
dc.identifier.issn | 0718-1876 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-105001323421 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.3390/jtaer20010028 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/12377 | |
dc.identifier.volume | 20 | en_US |
dc.identifier.wos | WOS:001453280400001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Cart Abandonment | en_US |
dc.subject | Purchase Prediction | en_US |
dc.subject | Price Changes | en_US |
dc.subject | Product Category Shifts | en_US |
dc.subject | Geographic Context | en_US |
dc.subject | Machine Learning Techniques | en_US |
dc.title | An Analysis of Consumer Purchase Behavior Following Cart Addition in E-Commerce Utilizing Explainable Artificial Intelligence | en_US |
dc.type | Article | en_US |