YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Some Convergence Theorems in Fourier Algebras

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge Univ Press

Abstract

Let G be a locally compact amenable group and A(G) and B(G) be the Fourier and the Fourier-Stieltjes algebras of G; respectively. For a power bounded element u of B(G), let epsilon(u) : = {g is an element of G : |u(g)| = 1}. We prove some convergence theorems for iterates of multipliers in Fourier algebras. (a) If parallel to u parallel to(B(G)) <= 1, then lim(n ->infinity) parallel to u(n)v parallel to(A(G)) = dist(v, I epsilon(u)) for v is an element of A(G), where I-epsilon u = {v is an element of A(G) : v(epsilon(u)) = {0}}. (b) The sequence {u(n)v}(n is an element of N) converges for every v is an element of A(G) if and only if epsilon(u) is clopen and u(epsilon(u)) = {1}. (c) If the sequence {u(n)v}(n is an element of N) converges weakly in A(G) for some v is an element of A(G), then it converges strongly.

Description

Keywords

Locally Compact Group, Fourier Algebra, Fourier-Stieltjes Algebra, Convergence

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q3

Source

Volume

96

Issue

3

Start Page

487

End Page

495