YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Review of Recursive and Operational Approaches of the Tau Method With a New Extension

dc.authorid Talaei, Younes/0000-0002-0145-4683
dc.authorid Tunc, Cemil/0000-0003-2909-8753
dc.authorscopusid 8927932100
dc.authorscopusid 57195068425
dc.authorscopusid 6603328862
dc.authorwosid Talaei, Younes/Aas-1467-2020
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Shahmorad, Sedaghat
dc.contributor.author Talaei, Younes
dc.contributor.author Tunc, Cemil
dc.date.accessioned 2025-05-10T17:18:41Z
dc.date.available 2025-05-10T17:18:41Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Shahmorad, Sedaghat; Talaei, Younes] Univ Tabriz, Dept Appl Math, 29 Bahman Blvd, Tabriz 5166616471, East Azarbijan, Iran; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkiye en_US
dc.description Talaei, Younes/0000-0002-0145-4683; Tunc, Cemil/0000-0003-2909-8753 en_US
dc.description.abstract This is a review paper that briefly represents the recursive and operational approaches to the Tau method on solving ordinary differential and integro-differential equations with suitable initial or boundary conditions, and we discuss a new extension of the method on solving a class of Abel Volterra integral equations which can be also used for solving fractional differential equations. Extension of height and canonical polynomials are introduced. Illustrative examples are given in each case to clarify the performance and structural properties of the method. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s40314-023-02444-1
dc.identifier.issn 2238-3603
dc.identifier.issn 1807-0302
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85171374953
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s40314-023-02444-1
dc.identifier.uri https://hdl.handle.net/20.500.14720/9761
dc.identifier.volume 42 en_US
dc.identifier.wos WOS:001193681200001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Tau Method en_US
dc.subject Operational Approach en_US
dc.subject Recursive Approach en_US
dc.title Review of Recursive and Operational Approaches of the Tau Method With a New Extension en_US
dc.type Article en_US

Files