A Comprehensive Study of Hydrogen Production From Ammonia Borane Via Pdcoag/Ac Nanoparticles and Anodic Current in Alkaline Medium: Experimental Design With Response Surface Methodology
dc.authorid | Yilmaz, Sakir/0000-0001-9797-0959 | |
dc.authorid | Er, Omer Faruk/0000-0002-7179-726X | |
dc.authorid | Sahan, Tekin/0000-0001-8776-9338 | |
dc.authorid | Kivrak, Hilal/0000-0001-8001-7854 | |
dc.authorscopusid | 57189211902 | |
dc.authorscopusid | 57194435125 | |
dc.authorscopusid | 10040883400 | |
dc.authorscopusid | 8719868100 | |
dc.authorscopusid | 57195395441 | |
dc.authorscopusid | 25959155500 | |
dc.authorwosid | Yildiz, Fikret/Abr-7141-2022 | |
dc.authorwosid | Er, Ömer Faruk/Aaj-6972-2021 | |
dc.authorwosid | Yilmaz, Sakir/Grf-6168-2022 | |
dc.authorwosid | Şahan, Tekin/Agg-9934-2022 | |
dc.authorwosid | Kivrak, Hilal/Aaq-8663-2021 | |
dc.contributor.author | Celik Kazici, Hilal | |
dc.contributor.author | Yilmaz, Sakir | |
dc.contributor.author | Sahan, Tekin | |
dc.contributor.author | Yildiz, Fikret | |
dc.contributor.author | Er, Omer Faruk | |
dc.contributor.author | Kivrak, Hilal | |
dc.date.accessioned | 2025-05-10T17:04:26Z | |
dc.date.available | 2025-05-10T17:04:26Z | |
dc.date.issued | 2020 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Celik Kazici, Hilal; Yilmaz, Sakir; Sahan, Tekin; Yildiz, Fikret; Er, Omer Faruk; Kivrak, Hilal] Van Yuzuncu Yil Univ, Fac Engn, Dept Chem Engn, TR-65080 Van, Turkey | en_US |
dc.description | Yilmaz, Sakir/0000-0001-9797-0959; Er, Omer Faruk/0000-0002-7179-726X; Sahan, Tekin/0000-0001-8776-9338; Kivrak, Hilal/0000-0001-8001-7854 | en_US |
dc.description.abstract | In this paper, the optimization of hydrogen (H-2) production by ammonia borane (NH3BH3) over PdCoAg/AC was investigated using the response surface methodology. Besides, the electro-oxidation of NH3BH3 was determined and optimized using the same method to measure its potential use in the direct ammonium boran fuel cells. Moreover, the ternary alloyed catalyst was synthesized using the chemical reduction method. The synergistic effect between Pd, Co and Ag plays an important role in enhancement of NH3BH3 hydrolysis. In addition, the support effect could also efficiently improve the catalytic performance. Furthermore, the effects of NH3BH3 concentration (0.1-50 mmol/5 mL), catalyst amount (1-30 mg) and temperature (20 degrees C-50 degrees C) on the rate of H-2 production and the effects of temperature (20 degrees C-50 degrees C), NH3BH3 concentration (0.05-1 mol/L) and catalyst amount (0.5-5 mu L) on the electro-oxidation reaction of NH3BH3 were investigated using the central composite design experimental design. The implementation of the response surface methodology resulted in the formulation of four models out of which the quadratic model was adjudged to efficiently appropriate the experimental data. A further statistical analysis of the quadratic model demonstrated the significance of the model with a p-value far less than 0.05 for each model and coefficient of determination (R-2) of 0.85 and 0.95 for H-2 production rate and NH3BH3 electrroxidation peak current, respectively. | en_US |
dc.description.sponsorship | Scientific Research Projects Department of Van YuzuncuYl University [FYL-2018-6571] | en_US |
dc.description.sponsorship | This work was financially supported by the Scientific Research Projects Department of Van YuzuncuYl University (Project No: FYL-2018-6571). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s11708-020-0808-7 | |
dc.identifier.endpage | 589 | en_US |
dc.identifier.issn | 2095-1701 | |
dc.identifier.issn | 2095-1698 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85083989551 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 578 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11708-020-0808-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/6011 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:000529561100001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Higher Education Press | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Ammonia Borane | en_US |
dc.subject | Hydrogen Production | en_US |
dc.subject | Fuel Cell | en_US |
dc.subject | Response Surface Methodology | en_US |
dc.title | A Comprehensive Study of Hydrogen Production From Ammonia Borane Via Pdcoag/Ac Nanoparticles and Anodic Current in Alkaline Medium: Experimental Design With Response Surface Methodology | en_US |
dc.type | Article | en_US |