YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Multi-Period Prediction of Solar Radiation Using Arma and Arima Models

dc.authorid Bayindir, Ramazan/0000-0001-6424-0343
dc.authorid Genc, Naci/0000-0001-5673-1708
dc.authorscopusid 6602990030
dc.authorscopusid 35792736300
dc.authorscopusid 23481908900
dc.authorscopusid 6506084880
dc.authorwosid Colak, Ilhami/Abi-4240-2020
dc.authorwosid Genc, Naci/Aae-3477-2019
dc.authorwosid Bayindir, Ramazan/A-4595-2018
dc.contributor.author Colak, Ilhami
dc.contributor.author Yesilbudak, Mehmet
dc.contributor.author Genc, Naci
dc.contributor.author Bayindir, Ramazan
dc.date.accessioned 2025-05-10T17:42:14Z
dc.date.available 2025-05-10T17:42:14Z
dc.date.issued 2015
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Colak, Ilhami] Istanbul Gelisim Univ, Dept Mech Engn, Fac Engn & Architecture, TR-34315 Istanbul, Turkey; [Yesilbudak, Mehmet] Nevsehir Haci Bektas Veli Univ, Dept Elect & Elect Engn, Fac Engn & Architecture, TR-50300 Nevsehir, Turkey; [Genc, Naci] Yuzuncu Yil Univ, Dept Elect & Elect Engn, Fac Engn & Architecture, TR-65080 Van, Turkey; [Bayindir, Ramazan] Gazi Univ, Fac Technol, Dept Elect & Elect Engn, TR-06500 Ankara, Turkey en_US
dc.description Bayindir, Ramazan/0000-0001-6424-0343; Genc, Naci/0000-0001-5673-1708 en_US
dc.description.abstract Due to the variations in weather conditions, solar power integration to the electricity grid at a high penetration rate can cause a threat for the grid stability. Therefore, it is required to predict the solar radiation parameter in order to ensure the quality and the security of the grid. In this study, initially, a 1-h time series model belong to the solar radiation parameter is created for multi-period predictions. Afterwards, autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models are compared in terms of the goodness-of-fit value produced by the log-likelihood function. As a result of determining the best statistical models in multi-period predictions, one-period, two-period and three-period ahead predictions are carried out for the solar radiation parameter in a comprehensive way. Many feasible comparisons have been made for the solar radiation prediction. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/ICMLA.2015.33
dc.identifier.endpage 1049 en_US
dc.identifier.isbn 9781509002870
dc.identifier.scopus 2-s2.0-84969695668
dc.identifier.scopusquality N/A
dc.identifier.startpage 1045 en_US
dc.identifier.uri https://doi.org/10.1109/ICMLA.2015.33
dc.identifier.uri https://hdl.handle.net/20.500.14720/15504
dc.identifier.wos WOS:000380483600182
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.ispartof IEEE 14th International Conference on Machine Learning and Applications ICMLA -- DEC 09-11, 2015 -- Miami, FL en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Solar Radiation en_US
dc.subject Multi-Period Prediction en_US
dc.subject Arma en_US
dc.subject Arima en_US
dc.title Multi-Period Prediction of Solar Radiation Using Arma and Arima Models en_US
dc.type Conference Object en_US

Files