YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Diamond Alpha Bennett-Leindler Type Dynamic Inequalities and Their Applications

dc.authorid Kayar, Zeynep/0000-0002-8309-7930
dc.authorid Pelen, Neslihan Nesliye/0000-0003-1853-3959
dc.authorscopusid 55695817800
dc.authorscopusid 7801347693
dc.authorscopusid 56663233400
dc.contributor.author Kayar, Zeynep
dc.contributor.author Kaymakcalan, Billur
dc.contributor.author Pelen, Neslihan Nesliye
dc.date.accessioned 2025-05-10T17:14:51Z
dc.date.available 2025-05-10T17:14:51Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kayar, Zeynep] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkey; [Kaymakcalan, Billur] Cankaya Univ, Dept Math, Ankara, Turkey; [Pelen, Neslihan Nesliye] Ondokuz Mayis Univ, Dept Math, Samsun, Turkey en_US
dc.description Kayar, Zeynep/0000-0002-8309-7930; Pelen, Neslihan Nesliye/0000-0003-1853-3959 en_US
dc.description.abstract In this paper, two kinds of dynamic Bennett-Leindler type inequalities via the diamond alpha integrals are derived. The first kind consists of eight new integral inequalities which can be considered as mixed type in the sense that these inequalities contain delta, nabla and diamond alpha integrals together due to the fact that convex linear combinations of delta and nabla Bennett-Leindler type inequalities give diamond alpha Bennett-Leindler type inequalities. The second kind involves four new inequalities, which are composed of only diamond alpha integrals, unifying delta and nabla Bennett-Leindler type inequalities. For the second type, choosing alpha=1 or alpha=0 not only yields the same results as the ones obtained for delta and nabla cases but also provides novel results for them. Therefore, both kinds of our results expand some of the known delta and nabla Bennett-Leindler type inequalities, offer new types of these inequalities, and bind and unify them into one diamond alpha Bennett-Leindler type inequalities. Moreover, an application of dynamic Bennett-Leindler type inequalities to the oscillation theory of the second-order half linear dynamic equation is developed and presented for the first time ever. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1002/mma.7955
dc.identifier.endpage 2819 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85119988006
dc.identifier.scopusquality Q1
dc.identifier.startpage 2797 en_US
dc.identifier.uri https://doi.org/10.1002/mma.7955
dc.identifier.uri https://hdl.handle.net/20.500.14720/8465
dc.identifier.volume 45 en_US
dc.identifier.wos WOS:000723134100001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bennett'S Inequality en_US
dc.subject Copson'S Inequality en_US
dc.subject Diamond-Alpha Derivative en_US
dc.subject Hardy'S Inequality en_US
dc.subject Leindler'S Inequality en_US
dc.subject Oscillation Of The Second-Order Half Linear Dynamic Equation en_US
dc.title Diamond Alpha Bennett-Leindler Type Dynamic Inequalities and Their Applications en_US
dc.type Article en_US

Files