The New Solitary Wave Structures for the (2
dc.authorid | Alam, Prof. Dr. Md. Nur/0000-0001-6815-678X | |
dc.authorscopusid | 55979705100 | |
dc.authorscopusid | 6603328862 | |
dc.authorwosid | Alam, Prof. Dr. Md. Nur/T-7027-2019 | |
dc.authorwosid | Tunç, Cemil/Afh-0945-2022 | |
dc.contributor.author | Alam, Md Nur | |
dc.contributor.author | Tunc, Cemil | |
dc.date.accessioned | 2025-05-10T17:09:05Z | |
dc.date.available | 2025-05-10T17:09:05Z | |
dc.date.issued | 2020 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Alam, Md Nur] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China; [Alam, Md Nur] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh; [Tunc, Cemil] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey | en_US |
dc.description | Alam, Prof. Dr. Md. Nur/0000-0001-6815-678X | en_US |
dc.description.abstract | The present paper employs the space-time fractional nonlinear Bogoyavlenskii equation and Schrodinger equation. We perform a new method to take some new solitary wave phenomena for each equation. Those solutions can explain through hyperbolic, trigonometric and rational func-tions. The graphical design makes the dynamics of the equations noticeable. Herein, the intended approach is simplistic, conventional, and convenient in implementing many solitary wave phenom-ena of several nonlinear fractional wave equations occurring in mathematical physics and engineer-ing as well. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/). | en_US |
dc.description.sponsorship | CAS-TWAS | en_US |
dc.description.sponsorship | The authors would like to acknowledge CAS-TWAS president's fellowship program. The authors of this paper would like to express their sincere appreciation to the dear anonymous editor and referees for their valuable comments and suggestions which have led to an improvement in the presentation of the paper. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1016/j.aej.2020.01.054 | |
dc.identifier.endpage | 2232 | en_US |
dc.identifier.issn | 1110-0168 | |
dc.identifier.issn | 2090-2670 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85079895609 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 2221 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aej.2020.01.054 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/7031 | |
dc.identifier.volume | 59 | en_US |
dc.identifier.wos | WOS:000563769700016 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Jumarie'S Modified Riemann-Liouville Derivative | en_US |
dc.subject | New Method | en_US |
dc.subject | The (2 + 1)-Dimensional Time Fractional Schrodinger Equation | en_US |
dc.subject | The Space-Time Nonlinear Conformable Fractional Bogoyavlenskii Equations | en_US |
dc.subject | Exact Solutions | en_US |
dc.title | The New Solitary Wave Structures for the (2 | en_US |
dc.type | Article | en_US |