Applications and Comparisons of Optimization Algorithms Used in Convolutional Neural Networks
dc.authorid | Seyyarer, Ebubekir/0000-0002-8981-0266 | |
dc.authorid | Karci, Ali/0000-0002-8489-8617 | |
dc.authorid | Uckan, Taner/0000-0001-5385-6775 | |
dc.authorscopusid | 57207461582 | |
dc.authorscopusid | 57200138639 | |
dc.authorscopusid | 57200139869 | |
dc.authorscopusid | 57208976075 | |
dc.authorscopusid | 57215326726 | |
dc.authorscopusid | 6602929072 | |
dc.authorwosid | Karci, Ali/Aag-5337-2019 | |
dc.authorwosid | Seyyarer, Ebubekir/Aep-6947-2022 | |
dc.authorwosid | Uckan, Taner/Izp-9705-2023 | |
dc.contributor.author | Seyyarer, Ebubekir | |
dc.contributor.author | Uckan, Taner | |
dc.contributor.author | Hark, Cengiz | |
dc.contributor.author | Ayata, Faruk | |
dc.contributor.author | Inan, Mevlut | |
dc.contributor.author | Karci, Ali | |
dc.date.accessioned | 2025-05-10T17:43:22Z | |
dc.date.available | 2025-05-10T17:43:22Z | |
dc.date.issued | 2019 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Seyyarer, Ebubekir; Uckan, Taner; Ayata, Faruk; Inan, Mevlut] Van Yuzuncu Yil Univ, Bilgisayar Teknolojileri Bolumu, Van, Turkey; [Hark, Cengiz] Bitlis Eren Univ, Bilgisayar Teknolojileri Bolumu, Bitlis, Turkey; [Karci, Ali] Inonu Univ, Bilgisayar Muhendisligi, Malatya, Turkey | en_US |
dc.description | Seyyarer, Ebubekir/0000-0002-8981-0266; Karci, Ali/0000-0002-8489-8617; Uckan, Taner/0000-0001-5385-6775 | en_US |
dc.description.abstract | Nowadays, it is clear that the old mathematical models are incomplete because of the large size of image data set. For this reason, the Deep Learning models introduced in the field of image processing meet this need in the software field In this study, Convolutional Neural Network (CNN) model from the Deep Learning Algorithms and the Optimization Algorithms used in Deep Learning have been applied to international image data sets. Optimization algorithms were applied to both datasets respectively, the results were analyzed and compared The success rate was approximately 96.21% in the Caltech 101 data set, while it was observed to be approximately 10% in the Cifar-100 data set. | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.doi | 10.1109/idap.2019.8875929 | |
dc.identifier.scopus | 2-s2.0-85074884249 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.1109/idap.2019.8875929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/15837 | |
dc.identifier.wos | WOS:000591781100058 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | tr | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | International Conference on Artificial Intelligence and Data Processing (IDAP) -- SEP 21-22, 2019 -- Inonu Univ, Malatya, TURKEY | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Convolutional Neural Networks | en_US |
dc.subject | Optimization Algorithms | en_US |
dc.subject | Caltech 101 | en_US |
dc.subject | Cifar-100 | en_US |
dc.title | Applications and Comparisons of Optimization Algorithms Used in Convolutional Neural Networks | en_US |
dc.type | Conference Object | en_US |