YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Simulated Annealing Approach Based Simulation -Optimisation To the Dynamic Job-Shop Scheduling Problem

dc.authorwosid Hamzadayi, Alper/G-3218-2019
dc.authorwosid Sel, Cagri/B-8597-2016
dc.contributor.author Sel, Cagri
dc.contributor.author Hamzadayi, Alper
dc.date.accessioned 2025-05-10T17:10:49Z
dc.date.available 2025-05-10T17:10:49Z
dc.date.issued 2018
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Sel, Cagri] Karabuk Univ, Ind Engn Dept, Fac Engn, Karabuk, Turkey; [Hamzadayi, Alper] Van Yuzuncu Yil Univ, Ind Engn Dept, Fac Engn, Van, Turkey en_US
dc.description.abstract In this study, we address a production scheduling problem. The scheduling problem is encountered in a job-shop production type. The production system is discrete and dynamic system in which jobs arrive continually. We introduce a simulation model (SM) to identify several situations such as machine failures, changing due dates in which scheduling rules (SRs) should be selected independently. Three SRs, i.e. the earliest due date rule (EDD), the shortest processing time first rule (SPT) and the first in first out rule (FIFO), are incorporated in a SM. A simulated annealing heuristic (SA) based simulation-optimisation approach is proposed to identify the unknown schedules in the dynamical system. In the numerical analysis, the performance of SRs and SA are compared using the simulation experiments. The objective functions minimising the mean flowtime and the mean tardiness are examined with varying levels of shop utilization and due date tightness. As an overall result, we observe that the proposed SA heuristic outperforms EDD and FIFO, the well-known SPT rule provides the best results. However, SA heuristic achieves very close results to the SPT and offers a reasonable computational burden in time-critical applications. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.5505/pajes.2017.47108
dc.identifier.endpage 674 en_US
dc.identifier.issn 1300-7009
dc.identifier.issn 2147-5881
dc.identifier.issue 4 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 665 en_US
dc.identifier.uri https://doi.org/10.5505/pajes.2017.47108
dc.identifier.uri https://hdl.handle.net/20.500.14720/7545
dc.identifier.volume 24 en_US
dc.identifier.wos WOS:000441810300014
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Pamukkale Univ en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Job-Shop Scheduling en_US
dc.subject Discrete And Dynamic System en_US
dc.subject Simulated Annealing Algorithm en_US
dc.subject Simulation-Optimisation en_US
dc.subject Scheduling Rules en_US
dc.title A Simulated Annealing Approach Based Simulation -Optimisation To the Dynamic Job-Shop Scheduling Problem en_US
dc.type Article en_US

Files