Enhanced Photoacoustic Signal Processing Using Empirical Mode Decomposition and Machine Learning
dc.authorid | Balci, Zekeriya/0000-0002-1389-1784 | |
dc.authorid | Mert, Ahmet/0000-0003-4236-3646 | |
dc.authorscopusid | 59203272000 | |
dc.authorscopusid | 16835036500 | |
dc.authorwosid | Mert, Ahmet/Aag-4941-2019 | |
dc.authorwosid | Balci, Zekeriya/Abq-1551-2022 | |
dc.contributor.author | Balci, Z. | |
dc.contributor.author | Mert, A. | |
dc.date.accessioned | 2025-05-10T17:23:20Z | |
dc.date.available | 2025-05-10T17:23:20Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Balci Z.] Caldiran Vocational High School, Van Yuzuncu Yil University, Van, Turkey; [Mert A.] Department of Mechatronic Eng, Bursa Technical University, Bursa, Turkey | en_US |
dc.description.abstract | In this study, we propose a robust photoacoustic (PA) signal processing framework for a material independent defect detection using empirical mode decomposition (EMD) and machine learning algorithms. First, a database of the PA signals with 960 samples has been obtained from aluminium, iron, plastic and wood materials using a laser, microphone and data acquisition board-based PA apparatus. Second, the EMD based time and time-frequency domain techniques are proposed to extract robust cross-material feature space focusing on laser induced acoustic signal, and the decomposed intrinsic mode (IMF) with 14 extracted features are performed on totally 960 samples PA signals to evaluate k-nearest neighbour (k-NN), decision tree (DT) and support vector machine (SVM) classifiers. Inter- material and cross-material evaluations are performed, and the accuracy rates up to 100% for SVM and 97.77% for k-NN are yielded. © 2024 Informa UK Limited, trading as Taylor & Francis Group. | en_US |
dc.description.sponsorship | Bursa Technical University, (210D003) | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1080/10589759.2024.2373318 | |
dc.identifier.endpage | 2056 | en_US |
dc.identifier.issn | 1058-9759 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-105002907021 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 2044 | en_US |
dc.identifier.uri | https://doi.org/10.1080/10589759.2024.2373318 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:001258134700001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.relation.ispartof | Nondestructive Testing and Evaluation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Decision Tree | en_US |
dc.subject | Empirical Mode Decomposition | en_US |
dc.subject | K-Nearest Neighbour | en_US |
dc.subject | Non-Destructive Testing | en_US |
dc.subject | Photoacoustic | en_US |
dc.subject | Support Vector Machine | en_US |
dc.title | Enhanced Photoacoustic Signal Processing Using Empirical Mode Decomposition and Machine Learning | en_US |
dc.type | Article | en_US |