YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Enhanced Photoacoustic Signal Processing Using Empirical Mode Decomposition and Machine Learning

dc.authorid Balci, Zekeriya/0000-0002-1389-1784
dc.authorid Mert, Ahmet/0000-0003-4236-3646
dc.authorscopusid 59203272000
dc.authorscopusid 16835036500
dc.authorwosid Mert, Ahmet/Aag-4941-2019
dc.authorwosid Balci, Zekeriya/Abq-1551-2022
dc.contributor.author Balci, Z.
dc.contributor.author Mert, A.
dc.date.accessioned 2025-05-10T17:23:20Z
dc.date.available 2025-05-10T17:23:20Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Balci Z.] Caldiran Vocational High School, Van Yuzuncu Yil University, Van, Turkey; [Mert A.] Department of Mechatronic Eng, Bursa Technical University, Bursa, Turkey en_US
dc.description.abstract In this study, we propose a robust photoacoustic (PA) signal processing framework for a material independent defect detection using empirical mode decomposition (EMD) and machine learning algorithms. First, a database of the PA signals with 960 samples has been obtained from aluminium, iron, plastic and wood materials using a laser, microphone and data acquisition board-based PA apparatus. Second, the EMD based time and time-frequency domain techniques are proposed to extract robust cross-material feature space focusing on laser induced acoustic signal, and the decomposed intrinsic mode (IMF) with 14 extracted features are performed on totally 960 samples PA signals to evaluate k-nearest neighbour (k-NN), decision tree (DT) and support vector machine (SVM) classifiers. Inter- material and cross-material evaluations are performed, and the accuracy rates up to 100% for SVM and 97.77% for k-NN are yielded. © 2024 Informa UK Limited, trading as Taylor & Francis Group. en_US
dc.description.sponsorship Bursa Technical University, (210D003) en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/10589759.2024.2373318
dc.identifier.endpage 2056 en_US
dc.identifier.issn 1058-9759
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-105002907021
dc.identifier.scopusquality Q2
dc.identifier.startpage 2044 en_US
dc.identifier.uri https://doi.org/10.1080/10589759.2024.2373318
dc.identifier.volume 40 en_US
dc.identifier.wos WOS:001258134700001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.ispartof Nondestructive Testing and Evaluation en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Decision Tree en_US
dc.subject Empirical Mode Decomposition en_US
dc.subject K-Nearest Neighbour en_US
dc.subject Non-Destructive Testing en_US
dc.subject Photoacoustic en_US
dc.subject Support Vector Machine en_US
dc.title Enhanced Photoacoustic Signal Processing Using Empirical Mode Decomposition and Machine Learning en_US
dc.type Article en_US

Files