YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modeling of the Angle of Shearing Resistance of Soils Using Soft Computing Systems

dc.authorid Demir, Ahmet/0000-0003-3559-8113
dc.authorscopusid 28567830900
dc.authorscopusid 6506243412
dc.authorscopusid 14522411400
dc.authorscopusid 58584670300
dc.authorscopusid 35739305500
dc.authorwosid Demir, Ahmet/Abm-7899-2022
dc.contributor.author Kayadelen, C.
dc.contributor.author Gunaydin, O.
dc.contributor.author Fener, M.
dc.contributor.author Demir, A.
dc.contributor.author Ozvan, A.
dc.date.accessioned 2025-05-10T17:19:32Z
dc.date.available 2025-05-10T17:19:32Z
dc.date.issued 2009
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kayadelen, C.] Kahramanmaras Sutcu Imam Univ, Dept Civ Engrg, Kahramanmaras, Turkey; [Gunaydin, O.; Fener, M.] Nigde Univ, Dept Geol Engrg, TR-51100 Nigde, Turkey; [Demir, A.] Cukurova Univ, Dept Civ Engrg, Adana, Turkey; [Ozvan, A.] Yuzuncu Yil Univ, Dept Geol Engrg, Van, Turkey en_US
dc.description Demir, Ahmet/0000-0003-3559-8113 en_US
dc.description.abstract Precise determination of the effective angle of shearing resistance (phi') value is a major concern and an essential criterion in the design process of the geotechnical structures, such as foundations, embankments, roads, slopes, excavation and liner systems for the solid waste. The experimental determination of phi' is often very difficult, expensive and requires extreme cautions and labor. Therefore many statistical and numerical modeling techniques have been suggested for the phi' value. However they can only consider no more than one parameter, in a simplified manner and do not provide consistent accurate prediction of the phi' value. This study explores the potential of Genetic Expression Programming, Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy (ANFIS) computing paradigm in the prediction of phi' value of soils. The data from consolidated-drained triaxial tests (CID) conducted in this study and the different project in Turkey and literature were used for training and testing of the models. Four basic physical properties of soils that cover the percentage of fine grained (FG), the percentage of coarse grained (CG), liquid limit (LL) and bulk density (BD) were presented to the models as input parameters. The performance of models was comprehensively evaluated some statistical criteria. The results revealed that GEP model is fairly promising approach for the prediction of angle of shearing resistance of soils. The statistical performance evaluations showed that the GEP model significantly outperforms the ANN and ANFIS models in the sense of training performances and prediction accuracies. (C) 2009 Elsevier Ltd. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.eswa.2009.04.008
dc.identifier.endpage 11826 en_US
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-67349218791
dc.identifier.scopusquality Q1
dc.identifier.startpage 11814 en_US
dc.identifier.uri https://doi.org/10.1016/j.eswa.2009.04.008
dc.identifier.uri https://hdl.handle.net/20.500.14720/9817
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000268270600046
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Genetic Expression Programming en_US
dc.subject Neural Networks en_US
dc.subject Adaptive Neuro Fuzzy en_US
dc.subject Angle Of Shearing Resistance Of Soils en_US
dc.title Modeling of the Angle of Shearing Resistance of Soils Using Soft Computing Systems en_US
dc.type Article en_US

Files