YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Robust Numerical Method for Singularly Perturbed Sobolev Periodic Problems on B-Mesh

dc.authorscopusid 56043249200
dc.authorscopusid 57217896644
dc.authorscopusid 59220232600
dc.contributor.author Duru, H.
dc.contributor.author Shazhdekeyeva, N.
dc.contributor.author Adiyeva, A.
dc.date.accessioned 2025-05-10T17:34:39Z
dc.date.available 2025-05-10T17:34:39Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Duru, H.] Van Yuzuncu Yil Univ, Van, Turkiye; [Shazhdekeyeva, N.; Adiyeva, A.] Kh Dosmukhamedov Atyrau Univ, Atyrau, Kazakhstan en_US
dc.description.abstract This article examines periodic Sobolev reports with a singular deviation, which causes significant difficulties in numerical approximation due to the presence of sharp or boundary layers. A stable quantitative method for the effective solution of such problems in the Bakhvalov lattice, a special grid for the deviant action of the solution, is proposed. Singularly perturbed periodic Sobolev problems create significant difficulties in numerical approximation due to the presence of sharp layers or boundary layers. Our proposed reliable numerical method for efficiently solving such problems on the Bakhvalov grid, a specialized grid, is designed to account for the singular behavior of the solution. First, an asymptotic analysis of the exact solution is performed. Then a finite difference scheme is created by applying quadrature interpolation rules to an adaptive network. The stability and convergence of the presented algorithm in a discrete maximum norm is analyzed. The results show that the proposed approach provides an accurate approximation of the solution for singular problems while maintaining computational efficiency. en_US
dc.description.sponsorship Ministry of Science and Education of Kazakhstan en_US
dc.description.sponsorship We thank the Ministry of Science and Education of Kazakhstan and the Rectorate of Atyrau Kh. Dosmukhamedov University for their support in the preparation of this article. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.26577/JMMCS2024-122-02-b4
dc.identifier.endpage 49 en_US
dc.identifier.issn 1563-0277
dc.identifier.issn 2617-4871
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85198659253
dc.identifier.scopusquality Q4
dc.identifier.startpage 36 en_US
dc.identifier.uri https://doi.org/10.26577/JMMCS2024-122-02-b4
dc.identifier.uri https://hdl.handle.net/20.500.14720/13878
dc.identifier.volume 122 en_US
dc.identifier.wos WOS:001266302500004
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Al-farabi Kazakh Natl Univ en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Key Words en_US
dc.subject Difference Scheme en_US
dc.subject Error Estimate en_US
dc.subject Periodic Boundary Value Problem en_US
dc.subject Singular Perturbation en_US
dc.subject Sobolev Differential Equation en_US
dc.title A Robust Numerical Method for Singularly Perturbed Sobolev Periodic Problems on B-Mesh en_US
dc.type Article en_US

Files