On a New Kind of Λ-Bernstein Operators for Univariate and Bivariate Functions
dc.authorscopusid | 39760964200 | |
dc.authorscopusid | 59363360300 | |
dc.authorscopusid | 26641769500 | |
dc.authorscopusid | 49862456700 | |
dc.authorscopusid | 57223898902 | |
dc.authorwosid | Aslan, Reşat/Gyu-8340-2022 | |
dc.authorwosid | Dinlemez Kantar, Ülkü/Aid-8681-2022 | |
dc.authorwosid | Cai, Qing-Bo/Aaa-2715-2021 | |
dc.contributor.author | Cai, Qing-Bo | |
dc.contributor.author | Kangal, Esma | |
dc.contributor.author | Kantar, Ulku Dinlemez | |
dc.contributor.author | Zhou, Guorong | |
dc.contributor.author | Asian, Resat | |
dc.date.accessioned | 2025-05-10T16:56:07Z | |
dc.date.available | 2025-05-10T16:56:07Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Cai, Qing-Bo] Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Peoples R China; [Kangal, Esma] Gazi Univ, Dept Math, Grad Nat & Appl Sci, Ankara, Turkiye; [Kantar, Ulku Dinlemez] Gazi Univ, Fac Sci, Dept Math, TR-06500 Ankara, Turkiye; [Zhou, Guorong] Xiamen Univ Technol, Sch Math & Stat, Xiamen 361024, Fujian, Peoples R China; [Asian, Resat] Van Yuzuncu Yil Univ, Dept Math, TR-65080 Van, Turkiye | en_US |
dc.description.abstract | This paper presents a novel class of lambda-Bernstein operators, wherein the parameter lambda is an element of [-1, 1]. An approximation theorem of the Korovkin type is explored, a local approximation theorem is established and an asymptotic formula of the Voronovskaja type is derived. In addition, the bivariate tensor product operators are built, some approximation properties are discussed, including an asymptotic theorem of the Voronovskaja type and the order of convergence in relation to Peetre's K-functional. Finally, for certain continuous functions, numerical examples and plots to demonstrate our newly defined operators' convergence behavior are provided and there are also provided in comparison with the classical Kantorovich operators in terms of the approximation error. | en_US |
dc.description.sponsorship | Fujian Provincial Natural Science Foundation of China [2024J01792] | en_US |
dc.description.sponsorship | Research supported by Fujian Provincial Natural Science Foundation of China (Grant No. 2024J01792). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.2298/FIL2505437C | |
dc.identifier.endpage | 1456 | en_US |
dc.identifier.issn | 0354-5180 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-105000131353 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 1437 | en_US |
dc.identifier.uri | https://doi.org/10.2298/FIL2505437C | |
dc.identifier.volume | 39 | en_US |
dc.identifier.wos | WOS:001469415800002 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Univ Nis, Fac Sci Math | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bernstein Operators | en_US |
dc.subject | Bernstein-Kantorovich Operators | en_US |
dc.subject | Basis Function | en_US |
dc.subject | Rate Of Convergence | en_US |
dc.subject | Peetre'S K-Functional | en_US |
dc.subject | Modulus Of Formula | en_US |
dc.subject | Tensor Product | en_US |
dc.title | On a New Kind of Λ-Bernstein Operators for Univariate and Bivariate Functions | en_US |
dc.type | Article | en_US |