YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Equilibrium Properties of a Spin-1 Ising System With Bilinear, Biquadratic and Odd Interactions

dc.authorscopusid 6602421311
dc.authorscopusid 6508235897
dc.authorscopusid 7006337429
dc.contributor.author Temirci, C
dc.contributor.author Kokce, A
dc.contributor.author Keskin, M
dc.date.accessioned 2025-05-10T17:13:16Z
dc.date.available 2025-05-10T17:13:16Z
dc.date.issued 1996
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Yuzuncu Yil Univ, Fiz Bolumu, Tr-65080 Van, Turkey; Suleyman Demirel Univ, Fiz Bolumu, Tr-32260 Isparta, Turkey; Gaziosmanpasa Univ, Fiz Bolumu, Tr-60110 Tokat, Turkey; Erciyes Univ, Fiz Bolumu, Tr-38039 Kayseri, Turkey en_US
dc.description.abstract The equilibrium properties of the spin-1 Ising system Hamiltonian with arbitrary bilinear (J), biquadratic (K) and odd (L), which is also called dipolar-quadrupolar, interactions is studied for zero magnetic field in the lowest approximation of the cluster variation method. The odd interaction is combined with the bilinear (dipolar) and biquadratic (quadrupolar) exchange interactions by the geometric mean. In this system, phase transitions depend on the ratio of the coupling parameters, alpha = J/K; therefore, the dependence of the nature of the phase transition on alpha is investigated extensively and it is found that for alpha less than or equal to 1 and alpha greater than or equal to 2000 a second-order phase transition occurs, and for 1 < alpha < 2000 a first-order phase transition occurs. The critical temperatures in the case of a second-order phase transition and the upper and lower limits of stability temperature in the case of a first-order phase transition are obtained for different values of alpha calculated using the Hessian determinant. The first-order phase transition temperatures are found by using the free energy values while increasing and decreasing the temperature. Besides the stable branches of the order parameters, we establish also the metastable and unstable parts of these curves and the thermal variations of these solutions as a function of the reduced temperature are investigated. The unstable solutions for the first-order phase transitions are obtained by displaying the free energy surfaces in the form of a contour map. Results are compared with the spin-1 Ising system Hamiltonian with the bilinear and biquadratic interactions and it is found that the odd interaction greatly influences the phase transitions. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/0378-4371(96)00094-5
dc.identifier.endpage 686 en_US
dc.identifier.issn 0378-4371
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-0030268865
dc.identifier.scopusquality Q1
dc.identifier.startpage 673 en_US
dc.identifier.uri https://doi.org/10.1016/0378-4371(96)00094-5
dc.identifier.uri https://hdl.handle.net/20.500.14720/8126
dc.identifier.volume 231 en_US
dc.identifier.wos WOS:A1996VJ90500025
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Equilibrium Properties of a Spin-1 Ising System With Bilinear, Biquadratic and Odd Interactions en_US
dc.type Article en_US

Files