YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Comprehensive Exploration of Deep Learning Approaches for Pulmonary Nodule Classification and Segmentation in Chest Ct Images

dc.authorid Canayaz, Murat/0000-0001-8120-5101
dc.authorid Sehribanoglu, Sanem/0000-0002-3099-7599
dc.authorscopusid 56565518400
dc.authorscopusid 55357508300
dc.authorscopusid 54998741200
dc.authorscopusid 57216390458
dc.authorwosid Akinci, Muhammed/Mah-0525-2025
dc.authorwosid Canayaz, Murat/Agd-2513-2022
dc.authorwosid Sehribanoglu, Sanem/Aaj-6148-2021
dc.contributor.author Canayaz, Murat
dc.contributor.author Sehribanoglu, Sanem
dc.contributor.author Ozgokce, Mesut
dc.contributor.author Akinci, M. Bilal
dc.date.accessioned 2025-05-10T17:23:38Z
dc.date.available 2025-05-10T17:23:38Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Canayaz, Murat] Van Yuzuncu Yil Univ, Dept Comp Engn, TR-65100 Van, Turkiye; [Sehribanoglu, Sanem] Van Yuzuncu Yil Univ, Dept Econometr, TR-65100 Van, Turkiye; [Ozgokce, Mesut; Akinci, M. Bilal] Van Yuzuncu Yil Univ, Fac Med, Dept Radiol, Van, Turkiye en_US
dc.description Canayaz, Murat/0000-0001-8120-5101; Sehribanoglu, Sanem/0000-0002-3099-7599 en_US
dc.description.abstract Accurately determining whether nodules on CT images of the lung are benign or malignant plays an important role in the early diagnosis and treatment of tumors. In this study, the classification and segmentation of benign and malignant nodules on CT images of the lung were performed using deep learning models. A new approach, C+EffxNet, is used for classification. With this approach, the features are extracted from CT images and then classified with different classifiers. In other phases of the study, a segmentation between benign and malignant was performed and, for the first time, a comparison of nodes was made during segmentation. The deep learning models InceptionV3, DenseNet121, and SeResNet101 were used as backbone models for feature extraction in the segmentation phase. In the classification phase, an accuracy of 0.9798, a precision of 0.9802, a recognition of 0.9798, an F1 score of 0.9798, and a kappa value of 0.9690 were achieved. During segmentation, the highest values of 0.8026 Jacard index and 0.8877 Dice coefficient were achieved. en_US
dc.description.sponsorship Van Yuzuncu Yil University en_US
dc.description.sponsorship No Statement Available en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00521-024-09457-9
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-85184205932
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1007/s00521-024-09457-9
dc.identifier.uri https://hdl.handle.net/20.500.14720/10955
dc.identifier.wos WOS:001154053600001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Pulmoner Nodules en_US
dc.subject Classification en_US
dc.subject Segmentation en_US
dc.title A Comprehensive Exploration of Deep Learning Approaches for Pulmonary Nodule Classification and Segmentation in Chest Ct Images en_US
dc.type Article en_US

Files