YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Estimation of the Parameters of the Gamma Geometric Process

dc.authorid Guven, Gamze/0000-0002-8821-3179
dc.authorscopusid 36910855300
dc.authorscopusid 57194174073
dc.authorscopusid 6506973358
dc.authorscopusid 8872498000
dc.authorwosid Aydoğdu, Halil/Aah-3036-2020
dc.contributor.author Kara, Mahmut
dc.contributor.author Guven, Gamze
dc.contributor.author Senoglu, Birdal
dc.contributor.author Aydogdu, Halil
dc.date.accessioned 2025-05-10T17:37:32Z
dc.date.available 2025-05-10T17:37:32Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kara, Mahmut] Van Yuzuncu Yil Univ, Dept Econometr, Van, Turkey; [Guven, Gamze] Eskisehir Osmangazi Univ, Dept Stat, Campus Meselik, TR-26040 Eskisehir, Turkey; [Senoglu, Birdal; Aydogdu, Halil] Ankara Univ, Dept Stat, Ankara, Turkey en_US
dc.description Guven, Gamze/0000-0002-8821-3179 en_US
dc.description.abstract There is no doubt that finding the estimators of model parameters accurately and efficiently is very important in many fields. In this study, we obtain the explicit estimators of the unknown model parameters in the gamma geometric process (GP) via the modified maximum likelihood (MML) methodology. These estimators are as efficient as maximum likelihood (ML) estimators. The marginal and joint asymptotic distributions of the MML estimators are also derived and efficiency comparisons between ML and MML estimators are made through an extensive Monte Carlo simulations. Moreover, a real data example is considered to illustrate the performances of the MML estimators together with their ML counterparts. According to simulation results, the performances of MML and ML estimators are close to each other even for small sample sizes. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/00949655.2022.2040501
dc.identifier.endpage 2535 en_US
dc.identifier.issn 0094-9655
dc.identifier.issn 1563-5163
dc.identifier.issue 12 en_US
dc.identifier.scopus 2-s2.0-85125928614
dc.identifier.scopusquality Q3
dc.identifier.startpage 2525 en_US
dc.identifier.uri https://doi.org/10.1080/00949655.2022.2040501
dc.identifier.uri https://hdl.handle.net/20.500.14720/14412
dc.identifier.volume 92 en_US
dc.identifier.wos WOS:000761528400001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Geometric Process en_US
dc.subject Gamma Distribution en_US
dc.subject Modified Maximum Likelihood en_US
dc.subject Asymptotic Normality en_US
dc.subject Monte Carlo Simulation en_US
dc.title Estimation of the Parameters of the Gamma Geometric Process en_US
dc.type Article en_US

Files