Estimation of the Parameters of the Gamma Geometric Process
dc.authorid | Guven, Gamze/0000-0002-8821-3179 | |
dc.authorscopusid | 36910855300 | |
dc.authorscopusid | 57194174073 | |
dc.authorscopusid | 6506973358 | |
dc.authorscopusid | 8872498000 | |
dc.authorwosid | Aydoğdu, Halil/Aah-3036-2020 | |
dc.contributor.author | Kara, Mahmut | |
dc.contributor.author | Guven, Gamze | |
dc.contributor.author | Senoglu, Birdal | |
dc.contributor.author | Aydogdu, Halil | |
dc.date.accessioned | 2025-05-10T17:37:32Z | |
dc.date.available | 2025-05-10T17:37:32Z | |
dc.date.issued | 2022 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Kara, Mahmut] Van Yuzuncu Yil Univ, Dept Econometr, Van, Turkey; [Guven, Gamze] Eskisehir Osmangazi Univ, Dept Stat, Campus Meselik, TR-26040 Eskisehir, Turkey; [Senoglu, Birdal; Aydogdu, Halil] Ankara Univ, Dept Stat, Ankara, Turkey | en_US |
dc.description | Guven, Gamze/0000-0002-8821-3179 | en_US |
dc.description.abstract | There is no doubt that finding the estimators of model parameters accurately and efficiently is very important in many fields. In this study, we obtain the explicit estimators of the unknown model parameters in the gamma geometric process (GP) via the modified maximum likelihood (MML) methodology. These estimators are as efficient as maximum likelihood (ML) estimators. The marginal and joint asymptotic distributions of the MML estimators are also derived and efficiency comparisons between ML and MML estimators are made through an extensive Monte Carlo simulations. Moreover, a real data example is considered to illustrate the performances of the MML estimators together with their ML counterparts. According to simulation results, the performances of MML and ML estimators are close to each other even for small sample sizes. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1080/00949655.2022.2040501 | |
dc.identifier.endpage | 2535 | en_US |
dc.identifier.issn | 0094-9655 | |
dc.identifier.issn | 1563-5163 | |
dc.identifier.issue | 12 | en_US |
dc.identifier.scopus | 2-s2.0-85125928614 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 2525 | en_US |
dc.identifier.uri | https://doi.org/10.1080/00949655.2022.2040501 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/14412 | |
dc.identifier.volume | 92 | en_US |
dc.identifier.wos | WOS:000761528400001 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Geometric Process | en_US |
dc.subject | Gamma Distribution | en_US |
dc.subject | Modified Maximum Likelihood | en_US |
dc.subject | Asymptotic Normality | en_US |
dc.subject | Monte Carlo Simulation | en_US |
dc.title | Estimation of the Parameters of the Gamma Geometric Process | en_US |
dc.type | Article | en_US |