Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning
dc.authorid | Erdem, Almina/0000-0003-4556-6027 | |
dc.authorwosid | Uzun, Mehmet/Jdd-5637-2023 | |
dc.authorwosid | Babaoğlu, Mert/Jxy-8686-2024 | |
dc.authorwosid | Çiçek, Vedat/Gpk-5234-2022 | |
dc.authorwosid | Erdem, Almina/Ixw-9842-2023 | |
dc.authorwosid | Hayiroglu, Mert/Aaq-3365-2021 | |
dc.authorwosid | Orhan, Ahmet/Afj-8925-2022 | |
dc.authorwosid | Şaylık, Faysal/Gqq-3347-2022 | |
dc.contributor.author | Cicek, Vedat | |
dc.contributor.author | Orhan, Ahmet Lutfullah | |
dc.contributor.author | Saylik, Faysal | |
dc.contributor.author | Sharma, Vanshali | |
dc.contributor.author | Tur, Yalcin | |
dc.contributor.author | Erdem, Almina | |
dc.contributor.author | Bagci, Ulas | |
dc.date.accessioned | 2025-06-30T15:24:29Z | |
dc.date.available | 2025-06-30T15:24:29Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Cicek, Vedat; Sharma, Vanshali; Bagci, Ulas] Northwestern Univ, Dept Radiol, Machine & Hybrid Intelligence Lab, 737 N Michigan Ave Suite 1600, Chicago, IL 60611 USA; [Orhan, Ahmet Lutfullah; Erdem, Almina; Babaoglu, Mert; Uzun, Mehmet; Keser, Nurgul] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Cardiol, Istanbul, Turkiye; [Ayten, Omer] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Pulm Med, Istanbul, Turkiye; [Saylik, Faysal] Hlth Sci Univ, Van Training & Res Hosp, Dept Cardiol, Van, Turkiye; [Tur, Yalcin] Stanford Univ, Dept Comp Sci, Stanford, CA USA; [Taslicukur, Solen; Oz, Ahmet] Istanbul Educ & Res Hosp, Dept Cardiol, Istanbul, Turkiye; [Hayiroglu, Mert Ilker] Res & Training Hosp, Dept Cardiol, Dr Siyami Ersek Cardiovasc & Thorac Surg, Istanbul, Turkiye; [Cinar, Tufan] Univ Maryland, Dept Med, Baltimore, MD USA | en_US |
dc.description | Erdem, Almina/0000-0003-4556-6027 | en_US |
dc.description.abstract | Background: Accurate prediction of short-term mortality in patients with acute pulmonary embolism (PE) is critical for optimizing treatment strategies and improving patient outcomes. The Pulmonary Embolism Severity Index (PESI) is the current reference score used for this purpose, but it has limitations regarding predictive accuracy. Our aim was to develop a new short-term mortality prediction model for PE patients based on deep learning (DL) with multimodal data, including imaging and clinical/demographic data. Methods and Results: We developed a novel multimodal deep learning (mmDL) model using contrast-enhanced multidetector computed tomography scans combined with clinical and demographic data to predict short-term mortality in patients with acute PE. We benchmarked various machine learning architectures, including XGBoost, convolutional neural networks (CNNs), and Transformers. Our cohort included 207 acute PE patients, of whom 53 died during their hospital stay. The mmDL model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 (P<0.001), significantly outperforming the PESI score, which had an AUC of 0.86 (P<0.001). Statistical analysis confirmed that the mmDL model was superior to PESI in predicting short-term mortality (P<0.001). Conclusions: Our proposed mmDL model predicts short-term mortality in patients with acute PE with high accuracy and significantly outperforms the current standard PESI score. | en_US |
dc.description.sponsorship | National Institutes of Health [R01CA246704, R01-CA240639, U01-DK127384-02S1, U01-CA268808] | en_US |
dc.description.sponsorship | U.B. is supported by National Institutes of Health grants (R01CA246704, R01-CA240639, U01-DK127384-02S1, and U01-CA268808) . | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1253/circj.CJ-24-0630 | |
dc.identifier.endpage | 611 | en_US |
dc.identifier.issn | 1346-9843 | |
dc.identifier.issn | 1347-4820 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.pmid | 39617426 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 602 | en_US |
dc.identifier.uri | https://doi.org/10.1253/circj.CJ-24-0630 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/25165 | |
dc.identifier.volume | 89 | en_US |
dc.identifier.wos | WOS:001493759100010 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Japanese Circulation Soc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Pulmonary Embolism | en_US |
dc.subject | Pulmonary Embolism Severity Index (PESI) | en_US |
dc.subject | Short-Term Mortality | en_US |
dc.title | Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning | en_US |
dc.type | Article | en_US |