YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning

dc.authorid Erdem, Almina/0000-0003-4556-6027
dc.authorwosid Uzun, Mehmet/Jdd-5637-2023
dc.authorwosid Babaoğlu, Mert/Jxy-8686-2024
dc.authorwosid Çiçek, Vedat/Gpk-5234-2022
dc.authorwosid Erdem, Almina/Ixw-9842-2023
dc.authorwosid Hayiroglu, Mert/Aaq-3365-2021
dc.authorwosid Orhan, Ahmet/Afj-8925-2022
dc.authorwosid Şaylık, Faysal/Gqq-3347-2022
dc.contributor.author Cicek, Vedat
dc.contributor.author Orhan, Ahmet Lutfullah
dc.contributor.author Saylik, Faysal
dc.contributor.author Sharma, Vanshali
dc.contributor.author Tur, Yalcin
dc.contributor.author Erdem, Almina
dc.contributor.author Bagci, Ulas
dc.date.accessioned 2025-06-30T15:24:29Z
dc.date.available 2025-06-30T15:24:29Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Cicek, Vedat; Sharma, Vanshali; Bagci, Ulas] Northwestern Univ, Dept Radiol, Machine & Hybrid Intelligence Lab, 737 N Michigan Ave Suite 1600, Chicago, IL 60611 USA; [Orhan, Ahmet Lutfullah; Erdem, Almina; Babaoglu, Mert; Uzun, Mehmet; Keser, Nurgul] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Cardiol, Istanbul, Turkiye; [Ayten, Omer] Hlth Sci Univ, Sultan II Abdulhamid Han Training & Res Hosp, Dept Pulm Med, Istanbul, Turkiye; [Saylik, Faysal] Hlth Sci Univ, Van Training & Res Hosp, Dept Cardiol, Van, Turkiye; [Tur, Yalcin] Stanford Univ, Dept Comp Sci, Stanford, CA USA; [Taslicukur, Solen; Oz, Ahmet] Istanbul Educ & Res Hosp, Dept Cardiol, Istanbul, Turkiye; [Hayiroglu, Mert Ilker] Res & Training Hosp, Dept Cardiol, Dr Siyami Ersek Cardiovasc & Thorac Surg, Istanbul, Turkiye; [Cinar, Tufan] Univ Maryland, Dept Med, Baltimore, MD USA en_US
dc.description Erdem, Almina/0000-0003-4556-6027 en_US
dc.description.abstract Background: Accurate prediction of short-term mortality in patients with acute pulmonary embolism (PE) is critical for optimizing treatment strategies and improving patient outcomes. The Pulmonary Embolism Severity Index (PESI) is the current reference score used for this purpose, but it has limitations regarding predictive accuracy. Our aim was to develop a new short-term mortality prediction model for PE patients based on deep learning (DL) with multimodal data, including imaging and clinical/demographic data. Methods and Results: We developed a novel multimodal deep learning (mmDL) model using contrast-enhanced multidetector computed tomography scans combined with clinical and demographic data to predict short-term mortality in patients with acute PE. We benchmarked various machine learning architectures, including XGBoost, convolutional neural networks (CNNs), and Transformers. Our cohort included 207 acute PE patients, of whom 53 died during their hospital stay. The mmDL model achieved an area under the receiver operating characteristic curve (AUC) of 0.98 (P<0.001), significantly outperforming the PESI score, which had an AUC of 0.86 (P<0.001). Statistical analysis confirmed that the mmDL model was superior to PESI in predicting short-term mortality (P<0.001). Conclusions: Our proposed mmDL model predicts short-term mortality in patients with acute PE with high accuracy and significantly outperforms the current standard PESI score. en_US
dc.description.sponsorship National Institutes of Health [R01CA246704, R01-CA240639, U01-DK127384-02S1, U01-CA268808] en_US
dc.description.sponsorship U.B. is supported by National Institutes of Health grants (R01CA246704, R01-CA240639, U01-DK127384-02S1, and U01-CA268808) . en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1253/circj.CJ-24-0630
dc.identifier.endpage 611 en_US
dc.identifier.issn 1346-9843
dc.identifier.issn 1347-4820
dc.identifier.issue 5 en_US
dc.identifier.pmid 39617426
dc.identifier.scopusquality Q1
dc.identifier.startpage 602 en_US
dc.identifier.uri https://doi.org/10.1253/circj.CJ-24-0630
dc.identifier.uri https://hdl.handle.net/20.500.14720/25165
dc.identifier.volume 89 en_US
dc.identifier.wos WOS:001493759100010
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Japanese Circulation Soc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deep Learning en_US
dc.subject Pulmonary Embolism en_US
dc.subject Pulmonary Embolism Severity Index (PESI) en_US
dc.subject Short-Term Mortality en_US
dc.title Predicting Short-Term Mortality in Patients With Acute Pulmonary Embolism With Deep Learning en_US
dc.type Article en_US

Files