YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of Cyclic Variability in a Diesel Engine Fueled With N-Butanol and Diesel Fuel Blends Using Artificial Neural Network

dc.authorid Altin, Ismail/0000-0002-7587-9537
dc.authorid Unver, Bedir/0000-0002-9306-2993
dc.authorid Gurgen, Samet/0000-0001-7036-8829
dc.authorscopusid 57193884565
dc.authorscopusid 57193893081
dc.authorscopusid 26533930400
dc.authorwosid Ünver, Bedir/Aal-2597-2021
dc.authorwosid Gürgen, Samet/Aag-6960-2019
dc.authorwosid Altin, Ismail/B-1076-2009
dc.contributor.author Gurgen, Samet
dc.contributor.author Unver, Bedir
dc.contributor.author Altin, Ismail
dc.date.accessioned 2025-05-10T17:04:51Z
dc.date.available 2025-05-10T17:04:51Z
dc.date.issued 2018
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Gurgen, Samet] Iskenderun Tech Univ, Dept Naval Architecture & Marine Engn, TR-31200 Antakya, Turkey; [Unver, Bedir] Yuzuncu Yil Univ, Dept Marine Engn, TR-65300 Van, Turkey; [Altin, Ismail] Karadeniz Tech Univ, Dept Naval Architecture & Marine Engn, TR-61530 Trabzon, Turkey en_US
dc.description Altin, Ismail/0000-0002-7587-9537; Unver, Bedir/0000-0002-9306-2993; Gurgen, Samet/0000-0001-7036-8829 en_US
dc.description.abstract In this study, the cyclic variability of a diesel engine using diesel fuel and butanol diesel fuel blends is modeled using an artificial neural network (ANN) method. The engine was operated with ten different engine speeds and full load conditions using six different n-butanol diesel fuel blends. The coefficient of variation (COV) of the indicated mean effective pressure (IMEP), which is a well-accepted evaluation method, was used to assess the cyclic variability for 100 sequential engine cycles. Results indicated that adding n-butanol to diesel fuel caused an increase. Moreover, the COVimep values exhibited a decreasing trend with an increase in the engine speed for each fuel. The experimental results were used to train the ANN. The ANN network was trained with Levenberg - Marquardt (LM) and Scaled Conjugate Gradient (SCG) algorithms. After training the ANN, it was found that the coefficient of determination (R-2) values were in the range of between 0.737 and 0.9677, the mean-absolute-percentage error (MAPE) values were smaller than 8.7 and the mean-square error values (MSE) were smaller than 0.042. The predictions of the developed ANN model showed reasonable consistency with the experimental results. (C) 2017 Elsevier Ltd. All rights reserved. en_US
dc.description.sponsorship Research Fund of Karadeniz Technical University [FYL-2015-5286] en_US
dc.description.sponsorship This work was supported by the Research Fund of Karadeniz Technical University, Project number: FYL-2015-5286. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.renene.2017.10.101
dc.identifier.endpage 544 en_US
dc.identifier.issn 0960-1481
dc.identifier.scopus 2-s2.0-85032891547
dc.identifier.scopusquality Q1
dc.identifier.startpage 538 en_US
dc.identifier.uri https://doi.org/10.1016/j.renene.2017.10.101
dc.identifier.uri https://hdl.handle.net/20.500.14720/6133
dc.identifier.volume 117 en_US
dc.identifier.wos WOS:000416498700046
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Diesel Engine en_US
dc.subject Butanol-Diesel Fuel Blend en_US
dc.subject Cyclic Variability en_US
dc.subject Artificial Neural Network en_US
dc.title Prediction of Cyclic Variability in a Diesel Engine Fueled With N-Butanol and Diesel Fuel Blends Using Artificial Neural Network en_US
dc.type Article en_US

Files