YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Use of Machine Learning Approaches for Body Weight Prediction in Peruvian Corriedale Sheep

dc.authorid Canaza-Cayo, Ali William/0000-0002-4189-4747
dc.authorid Cakmakci, Cihan/0000-0001-6512-9268
dc.authorid Rojas De La Cruz, Yhan Carlos/0000-0001-7750-8038
dc.authorscopusid 55918031800
dc.authorscopusid 58554405600
dc.authorscopusid 56038683800
dc.authorscopusid 57194416905
dc.authorscopusid 57540751900
dc.authorscopusid 56198169800
dc.authorscopusid 56198169800
dc.authorwosid Churata Huacani, Roxana/Hgd-2008-2022
dc.authorwosid Fernandes, Tales/Aay-8517-2020
dc.authorwosid Çakmakçi, Cihan/Aah-8428-2019
dc.authorwosid Canaza-Cayo, Ali William/Y-3470-2019
dc.contributor.author Canaza-Cayo, Ali William
dc.contributor.author Churata Huacani, Roxana
dc.contributor.author Cakmakci, Cihan
dc.contributor.author Rodriguez-Huanca, Francisco Halley
dc.contributor.author Filzo, Julio Silvio de Sousa Bueno
dc.contributor.author Fernandes, Tales Jesus
dc.contributor.author De La Cruz, Yhan Carlos Rojas
dc.date.accessioned 2025-05-10T17:23:29Z
dc.date.available 2025-05-10T17:23:29Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Canaza-Cayo, Ali William; Churata-Huacani, Roxana; Filzo, Julio Silvio de Sousa Bueno; Fernandes, Tales Jesus; De La Cruz, Yhan Carlos Rojas] Univ Fed Lavras, Dept Estat, Inst Ciencias Exatas & Tecnol, Codigo Postal 3037, BR-37200900 Lavras, MG, Brazil; [Canaza-Cayo, Ali William] Univ Nacl Altiplano, Escuela Profes Ingn Agron, Fac Ciencias Agr, Puno, Peru; [Cakmakci, Cihan] Van Yuzuncu Yil Univ, Fac Agr, Dept Agr Biotechnol, Anim Biotechnol Sect, Van, Turkiye; [Rodriguez-Huanca, Francisco Halley] Univ Nacl Altiplano, Fac Med Vet & Zootecnia, Puno, Peru en_US
dc.description Canaza-Cayo, Ali William/0000-0002-4189-4747; Cakmakci, Cihan/0000-0001-6512-9268; Rojas De La Cruz, Yhan Carlos/0000-0001-7750-8038 en_US
dc.description.abstract The goal of this study was to predict the body weight of Corriedale ewes using machine learning (ML) algorithms. Fourteen body measurements (BM) and six different machine learning models were used. Body weight (BW) and BM: wither height (WH), rump height (RH), thoracic perimeter (TP), abdominal perimeter (AP), foreshank length (FSL), fore-shank width (FSW), fore-shank perimeter (FSP), tail width (TW), tail perimeter (TPe), hip width (HW), loin width (LWi), shoulder width (SW), forelimb length (FL), and body length (BL), were collected from 100 Corriedale ewes between 1.5 and 2 years old from the Illpa Experimental Centre of the National University of Altiplano in Peru. The machine learning algorithms used to estimate body weight were Support Vector Machines for Regression (SVMR), Classification and Regression Trees (CART), Random Forest (RF), Model Average Neural Networks (MANN), Multivariate Adaptive Regression Splines (MARS) and eXtreme Gradient Boosting (XGBoost). The performance of the models was evaluated by the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Highly correlated predictors (r >= 075) were removed from the dataset. The remaining predictors were then subjected to variable selection procedures using the Boruta algorithm. Boruta results confirmed the importance of TP, LWi, BL, FSL, SW and HW as predictors of ewe weight. The ML models were then trained on those selected predictors. RF had the highest R2 values and lowest values of MAE, RMSE, and MAPE. In conclusion, the RF algorithm can be recommended for accurately estimating BW from body measurements of Corriedale sheep. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1016/j.atech.2024.100419
dc.identifier.issn 2772-3755
dc.identifier.scopus 2-s2.0-85186090758
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1016/j.atech.2024.100419
dc.identifier.uri https://hdl.handle.net/20.500.14720/10905
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:001197073400001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Machine Learning en_US
dc.subject Variable Importance en_US
dc.subject Correlation Matrix en_US
dc.subject Body Measurements en_US
dc.subject Body Weight en_US
dc.title Use of Machine Learning Approaches for Body Weight Prediction in Peruvian Corriedale Sheep en_US
dc.type Article en_US

Files