YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bayesian Inference for Geometric Process With Lindley Distribution and Its Applications

dc.authorscopusid 57224920023
dc.authorscopusid 36910855300
dc.authorscopusid 57837627700
dc.contributor.author Yilmaz, Asuman
dc.contributor.author Kara, Mahmut
dc.contributor.author Kara, Hasan
dc.date.accessioned 2025-05-10T17:11:56Z
dc.date.available 2025-05-10T17:11:56Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Yilmaz, Asuman; Kara, Mahmut] Van Yuzuncu Yil Univ, Fac Econ & Adm Sci, Dept Econometr, TR-65080 Van, Turkey; [Kara, Hasan] Igdir Univ, Fac Arts & Sci, Igdir, Turkey en_US
dc.description.abstract The geometric process (GP) plays an important role in the reliability theory and life span models. It has been used extensively as a stochastic model in many areas of application. Therefore, the parameter estimation problem is very crucial in a GP. In this study, the parameter estimation problem for GP is discussed under the assumption that X1 has a Lindley distribution with parameter theta. The maximum likelihood (ML) estimators of a,mu and sigma(2) of the GP and their asymptotic distributions are derived. A test statistic is developed based on ML estimators for testing whether a=1 or not. The same problem is also studied by using Bayesian methods. Bayes estimators of the unknown model parameters are obtained under squared error loss function (SELF) using uniform and gamma priors on the ratio a and theta parameters. It is not possible to obtain Bayes estimators in explicit forms. Therefore, Markov Chain Monte Carlo (MCMC), Lindley (LD), and Tierney-Kadane (T-K) methods are used to estimate the parameters a,mu and sigma(2) in GP. The efficiencies of the ML estimators are compared with Bayes estimators via an extensive Monte Carlo simulation study. It is seen that the Bayes estimators perform better than the ML estimators. Two real-life examples are also presented for application purposes. The first data set concerns the coal mining disaster. The second is the number of COVID-19 patients in Turkey. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1142/S0219477522500481
dc.identifier.issn 0219-4775
dc.identifier.issn 1793-6780
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85135712427
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1142/S0219477522500481
dc.identifier.uri https://hdl.handle.net/20.500.14720/7756
dc.identifier.volume 21 en_US
dc.identifier.wos WOS:000849379200001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Geometric Process en_US
dc.subject Lindley Distribution en_US
dc.subject Maximum Likelihood en_US
dc.subject Bayesian Estimation Methods en_US
dc.subject Monte Carlo Simulation en_US
dc.subject Covid-19 Data Set en_US
dc.title Bayesian Inference for Geometric Process With Lindley Distribution and Its Applications en_US
dc.type Article en_US

Files