YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Extractive Multi-Document Text Summarization Based on Graph Independent Sets

dc.authorid Uckan, Taner/0000-0001-5385-6775
dc.authorid Karci, Ali/0000-0002-8489-8617
dc.authorscopusid 57200138639
dc.authorscopusid 6602929072
dc.authorwosid Karci, Ali/Aag-5337-2019
dc.authorwosid Uckan, Taner/Izp-9705-2023
dc.contributor.author Uckan, Taner
dc.contributor.author Karci, Ali
dc.date.accessioned 2025-05-10T17:09:32Z
dc.date.available 2025-05-10T17:09:32Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Uckan, Taner] Van Yuzuncu Yil Univ, Comp Programming Dept, TR-65000 Van, Turkey; [Karci, Ali] Inonu Univ, Dept Comp Engn, TR-44000 Malatya, Turkey en_US
dc.description Uckan, Taner/0000-0001-5385-6775; Karci, Ali/0000-0002-8489-8617 en_US
dc.description.abstract We propose a novel methodology for extractive, generic summarization of text documents. The Maximum Independent Set, which has not been used previously in any summarization study, has been utilized within the context of this study. In addition, a text processing tool, which we named KUSH, is suggested in order to preserve the semantic cohesion between sentences in the representation stage of introductory texts. Our anticipation was that the set of sentences corresponding to the nodes in the independent set should be excluded from the summary. Based on this anticipation, the nodes forming the Independent Set on the graphs are identified and removed from the graph. Thus, prior to quantification of the effect of the nodes on the global graph, a limitation is applied on the documents to be summarized. This limitation prevents repetition of word groups to be included in the summary. Performance of the proposed approach on the Document Understanding Conference (DUC-2002 and DUC-2004) datasets was calculated using ROUGE evaluation metrics. The developed model achieved a 0.38072 ROUGE performance value for 100-word summaries, 0.51954 for 200-word summaries, and 0.59208 for 400-word summaries. The values reported throughout the experimental processes of the study reveal the contribution of this innovative method. (C) 2019 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Artificial Intelligence, Cairo University. en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.doi 10.1016/j.eij.2019.12.002
dc.identifier.endpage 157 en_US
dc.identifier.issn 1110-8665
dc.identifier.issn 2090-4754
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85077387625
dc.identifier.scopusquality Q1
dc.identifier.startpage 145 en_US
dc.identifier.uri https://doi.org/10.1016/j.eij.2019.12.002
dc.identifier.uri https://hdl.handle.net/20.500.14720/7169
dc.identifier.volume 21 en_US
dc.identifier.wos WOS:000573603100003
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Cairo Univ, Fac Computers & information en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Graph Independent Set en_US
dc.subject Graph-Based Document Summarization en_US
dc.subject Generic Document Summarization en_US
dc.subject Extractive Text Summarization en_US
dc.subject Multi Document Text Summarization en_US
dc.title Extractive Multi-Document Text Summarization Based on Graph Independent Sets en_US
dc.type Article en_US

Files