YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Green Function's Properties and Existence Theorems for Nonlinear Singular-Delay Differential Equations

dc.authorid Khan, Hasib/0000-0002-7186-8435
dc.authorid Khan, Aziz/0000-0001-6185-9394
dc.authorscopusid 55258301900
dc.authorscopusid 6603328862
dc.authorscopusid 56865012200
dc.authorwosid Khan, Aziz/Aag-4626-2021
dc.authorwosid Khan, Hasib/Afj-9925-2022
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Khan, Hasib
dc.contributor.author Tunc, Cemil
dc.contributor.author Khan, Aziz
dc.date.accessioned 2025-05-10T17:09:35Z
dc.date.available 2025-05-10T17:09:35Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Khan, Hasib] Shaheed BB Univ, Dept Math, Dir Upper 18000, Khybar Pakhtunk, Pakistan; [Tunc, Cemil] Van Yuzuncu Yil Univ, Dept Math, Fac Sci, TR-65080 Van, Turkey; [Khan, Aziz] Prince Sultan Univ, POB 66833, Riyadh 11586, Saudi Arabia en_US
dc.description Khan, Hasib/0000-0002-7186-8435; Khan, Aziz/0000-0001-6185-9394 en_US
dc.description.abstract In this paper, we are dealing with singular fractional differential equations (DEs) having delay and U-p (p-Laplacian operator). In our problem, we Contemplate two fractional order differential operators that is Riemann-Liouville and Caputo's with fractional integral and fractional differential initial boundary conditions.The SFDE is given by {D-gamma[U*(p)[D(kappa)x(t)]] + Q(t)zeta(1)(t, x(t - e*)) = 0, T-0(1)-gamma(U-p*[D(kappa)x(t)]]t=0 = 0 =T02-gamma(Up*[D kappa x(t)]]vertical bar t=0, D-delta* x(1) = 0, x(1) = x'(0), x((k)) (0) = 0 for k = 2, 3, ..., n-1, zeta 1 is a continuous function and singular at t and x(t) for some values of t 2 [0; 1]. The operator D-gamma is Riemann{Liouville fractional derivative while D delta*;D-kappa stand for Caputo fractional derivatives and delta*, gamma is an element of(1, 2], n - 1 < kappa <= n; where n >= 3. For the study of the EUS, fixed point approach is followed in this paper and an application is given to explain the findings. en_US
dc.description.woscitationindex Science Citation Index Expanded - Conference Proceedings Citation Index - Science
dc.identifier.doi 10.3934/dcdss.2020139
dc.identifier.endpage 2487 en_US
dc.identifier.issn 1937-1632
dc.identifier.issn 1937-1179
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-85085339947
dc.identifier.scopusquality Q2
dc.identifier.startpage 2475 en_US
dc.identifier.uri https://doi.org/10.3934/dcdss.2020139
dc.identifier.uri https://hdl.handle.net/20.500.14720/7181
dc.identifier.volume 13 en_US
dc.identifier.wos WOS:000541815700009
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.ispartof Workshop on Delay Differential Equations - Theory, Applications and New Trends (DDEs-TANTs) -- OCT 03-04, 2018 -- United Arab Emirates Univ, Al Ain, U ARAB EMIRATES en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractional Differential Equations With Singularity en_US
dc.subject Existence Of Positive Solution en_US
dc.subject Hyers-Ulam Stability en_US
dc.subject Caputo'S Fractional Derivative en_US
dc.title Green Function's Properties and Existence Theorems for Nonlinear Singular-Delay Differential Equations en_US
dc.type Conference Object en_US

Files